

Partenaire de vos projets

Catalogue Equipements Protection Cathodique

PRISE DE MESURE PM100 Sécurisée

DESCRIPTIF

La prise de mesure PM100 sécurisée (prise de potentiel) est réalisée en acier inoxydable et combine les avantages de ceux réalisés en plastique, béton ou en polyester.

- Robuste
- Accès aisé des câbles
- · Facile à installer
- Fermé par un couvercle amovible verrouillé par une serrure de type « triangle »

EQUIPEMENT

La prise de mesure PM100 est équipée :

- D'une platine de mesure 8VS (8voies de 1 x 16mm²) équipée d'embases de type « banane » Ø4mm sécurisée classe III en or et de capuchons de protection.
- D'un connecteur de liaison de 8 voies de 16mm²
- De 6 cavaliers type « banane » Ø4mm sécurisées en or.
- D'une étiquette de repérage et de câblage.
- D'un rail DIN type Omega 7.5 afin d'accueillir 7 bornes de 1 x 35mm² IP21 afin de réaliser des adaptations de changement de section de câbles.
- De 2 tubes d'ancrage pour son installation

CARACTERISTIQUES TECHNIQUES

Dimensions extérieure : H 1200 L 126 P126 mm
Hauteur hors sol : 880 mm

Accès de : H 260 L 116mm
Indice de protection : IP44

• Fermeture par une serrure type ¼ de tour triangle avec capuchon de protection

Poids: 10kg

• Coloris : Peinture standard Epoxy RAL7033

Coloris sur demande suivant RAL et à partir de 50 pièces.

• Emballage : carton

PRISE DE MESURE PM100 DE RÉNOVATION Sécurisée

DESCRIPTIF

La prise de mesure PM100 de rénovation sécurisée (prise de potentiel) est réalisée en acier inoxydable et combine les avantages de ceux réalisés en plastique, béton ou en polyester. Elle est utilisée pour le remplacement de borne plastique ou de coffret aluminium installé sur un tube Ø2".

- Robuste
- · Accès aisé des câbles
- Mise en œuvre simple
- · Facile à installer
- Très faible coût de mise en place
- Issue de la gamme PM100
- Fermé par un couvercle amovible verrouillé par une serrure de type « triangle »

EQUIPEMENT

La prise de mesure PM100 de rénovation est équipée :

- D'une platine de mesure 8VS (8voies de 1 x 16mm²) équipée d'embases de type « banane » Ø4mm sécurisée classe III en or et de capuchons de protection.
- D'un connecteur de liaison de 8 voies de 16mm²
- De 6 cavaliers type « banane » Ø4mm sécurisées en or.
- D'une étiquette de repérage et de câblage.
- D'un rail DIN type Omega 7.5 afin d'accueillir 7 bornes de 1 x 35mm² IP21 afin de réaliser des adaptations de changement de section de câbles.
- D'un support clip permettant l'installation de la PM100 par simple clip et sans visserie.

CARACTERISTIQUES TECHNIQUES

Dimensions extérieure :
 H 800 L 126 P126 mm

Accès de : H 260 L 116mmIndice de protection : IP44

• Fermeture par une serrure type ¼ de tour triangle avec capuchon de protection

Poids : 8kg

Coloris: Peinture standard Epoxy RAL7033

Coloris sur demande suivant RAL et à partir de 50 nièces

Emballage : carton

PRISE DE MESURE MODULAIRE PMM200

DESCRIPTIF

La prise de mesure modulaire **PMM200**, est un coffret pour une utilisation extérieure, installée aux abords des structures protégées. Elle permet de réaliser des mesures, des jonctions, d'installer des équipements actifs et de mesures.

Ce coffret est entièrement fabriqué en acier inoxydable peint qui vous permet de vous garantir un produit de qualité, d'une durée de vie importante, d'une solidité optimale, une bonne résistance aux UV et aux agressions chimiques. Elle combine les avantages de ceux réalisés en plastique, béton ou en polyester.

La prise de mesure modulaire PMM200 a été conçue de façon à optimiser son installation sur chantier.

- Robuste.
- Peu de moyens à mettre en œuvre.
- Facile d'installation, de mise en service, de maintenance et de reconfigurations.
- · Accès aisé des câbles.
- Fermé par un couvercle amovible verrouillé par une serrure de type « triangle ».

EQUIPEMENT

La PMM200 est doté de nombreux éléments et options permettant de configurer votre équipement en fonction de vos besoins, applications et usages dans le temps :

- · Deux logements platine avec protection.
- Platine de mesure 8VS.
- Support pour intégration d'équipement de télétransmission.
- Platine de liaisons.
- Support rail Din équipé de bornes sécurisées.
- Support pour appareil de mesure ou batterie.
- Guide puits de mesure et fourreau.
- Fixation à boulonner sur massif béton.
- Fixation pour ancrage pour béton ou pour pose enterré.

CARACTERISTIQUES DE MISE EN PLACE

- Différents types de fixation modifiable dans le temps fixées par l'extérieur.
- Deux logements de platines fixées par l'avant.
- Deux rails de guidage avec patins sur ressort permettant d'installer facilement les équipements par l'avant.
- Un réglage extrêmement simplifié.
- Une poignée encastrée sur le capot pour simplifier les manipulations.
- Un support capot « ouvert » pour faciliter les manipulations.
- Une serrure triangle avec une protection anti-salissures pour éviter les blocages.
- Etc...

CARACTERISTIQUES TECHNIQUES

Dimensions extérieure : H 1200 L 240 P155 mm
Accès de : H 600 L 162mm

Indice de protection : IP44

 Fermeture par une serrure type ¼ de tour triangle avec capuchon de protection

Poids: 15kg

• Coloris: Peinture standard Epoxy RAL7035

 Coloris sur demande suivant RAL et à partir de 50 pièces.

OPTIONS PRISE DE MESURE MODULAIRE PMM200

PLATINE DE MESURE 8VS

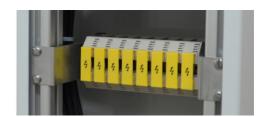
La platine de mesure 8VS est un équipement d'interface IP2x permettant de réaliser les mesures de protection cathodique d'une structure enterrée ou immergée.

L'assemblage monobloc en combinant les technologies de tôlerie fine, de la plasturgie et de l'électronique permet d'obtenir un ensemble très robuste.

Les connecteurs de type « banane Ø4 » sont dorés à l'or et équipés de capuchons étanches limitant les problèmes de corrosions, de salissures et d'usure.

La platine de mesure a les caractéristiques suivantes :

- Liaison électrique via un connecteur de 8 voies de 16mm²
- Platine monobloc.
- Fixation de la platine avec quatre vis.
- Accès pour la pose ou dépose par la face avant.


SUPPORT RAIL DIN

Le support rail DIN de type oméga de 146mm longueur permet d'intégrer dans la PMM 200 tout type d'équipement électrique modulaire, par exemple :

- Des bornes (8 bornes de 35mm² maximum)
- Des disjoncteurs, portes fusibles.
- Des Prises de courant.
- Des contacteurs, relais.
- Ftc...

BORNIER Sécurisée 8 x 35mm2 sur support rail Din

Le bornier de 35mm² monté sur le support rail DIN permet d'adapter les liaisons supérieures à 16 mm 2 et d'intégrer dans la PMM 200 tout type d'équipement électrique modulaire de faible encombrement.

PLATEAU PMM 200

Le plateau PMM 200 en inox permet de poser tout type d'équipements temporairement ou permanent tel que :

- Un enregistreur.
- Une batterie.
- Un chronorupteur.
- Etc...

SUPPORT PUITS DE MESURE

Le support de puits de mesure en inox permet de maintenir tous types de puits de mesure ou de gaines électrique dont le diamètre extérieur n'excède pas 62mm.

MINI TRANSFORMATEUR-REDRESSEUR TRA

Le mini transformateur-redresseur TRA est un véritable concentré des transformateurs-redresseurs classiques utilisant une technologie « électrotechnique » et « électronique de puissance » largement éprouvée depuis des années dans des environnements sévères, hostiles, désertiques et à haute température.

DESCRIPTIF

Alimentation Monophasé 230 Volts AC - 50 Hz Sortie DC Tension 48 V - Courant 20 A

Tension 48 V - Courant 10 A Tension 24 V - Courant 20 A Tension 24 V - Courant 10 A

Refroidissement Convection forcée

Type de régulation Automatique par AutoPC AD100

Mode de régulation Tension

> Courant constant Potentiel constant

Réglage de la pente de

régulation

Modules diodes-thyristors avec Technologie

déclencheur

Courant de sortie sur shunt 100mV Embase de mesures

Tension de sortie Electrode de référence SYNC pour TOPEUR *

Disjoncteur primaire Protection en façade

Fusibles secondaire 10x38 - 20A Parafoudre secondaire à cartouche Fusibles 5x20 - Commande

Ampèremètre 48 x 48 0-20A / Afficheur 0-10A DC sur shunt 100mv

Voltmètre 48x48 0-50V - 0-24V DC

Vert « En service »

Voyant en facade Branchement Version Version à murale poser 3 bornes 16mm² Prise IEC Entrée secteur

Sortie secondaire 2 bornes 16mm² 2 bornes 16mm² Electrode de 1 borne 16mm² 1 borne 16mm²

référence

* Notre produit peut être interfacé avec tout type de synchrorupteurs, car la commande du ON/OFF est réalisée avec une coupure en 5V / 1 mA.

Lors des phases ON/OFF, l'AutoPC AD100 se met en mode Hold (paramètres de sortie fixe sans asservissement) dès le premier Toff.

CARACTERISTIQUES TECHNIQUES

Dimensions Largeur 200 mm

Profondeur 209,50 mm

Hauteur 300 mm

« In door » Usage Poids 18 kg maxi Matière INOX 304L Peinture **RAL7035**

Fixation Murale ou à poser

TRANSFORMATEUR REDRESSEUR TYPE AIR

Alimentation monophasé 230V AC – 50 Hz Alimentation triphasé 400V AC – 50Hz Plage de tension de sortie de 12V à 150V CC Plage de courant de sortie de 1A à 250A CC Température ambiante en service : -20°C à +55°C

Type de régulation :

- Manuelle (autotransformateur variable)
- Semi-automatique (Pont mixte)
- Automatique asservie par AutoPC

Type de Coffret :

- Acier 15 ou 20/10 peint époxy structurée RAL 7032- IP55 / IK10 (autre sur demande)
- Polyester RAL 7035 IP66 / IK10, adaptés aux ambiances corrosives
- En rack inclus dans une baie en tôle d'acier 20/10 peint époxy structurée RAL 7032 IP55 / IK10 (autre sur demande)

Transformateur redresseur Automatique

Transformateur redresseur Semi-automatique

GUIDE DE SELECTION TRANSFORMATEUR – REDRESSEUR TYPE AIR

Description			Commentaire	
Alimentation		-		
		-		
Protect	ion entrée			
110:00:		Oui	Non	
Convention no	aturalla au fara é a	Ventilatio	n naturelle	
Convection na	aturelle ou forcee	Ventilateur	+ thermostat	
		Oui	Non	
· ` ` ` `	<u> </u>	Oui	Non	
-	, ,	Oui	Non	
Commande 4-20mA (c	onvertisseur de mesure)	Oui	Non	
				1
		Valeur:		Volt
		Valeur:		Ampère
Protection	s de la sortie	Oui	Non	
Porno do s	cortio positivo	b	. .	A
· · · · · · · · · · · · · · · · · · ·				
Borne pour po	tentier: Structure	Quantité:	Dimensions	câble:
	Appareil analogique	Oui	Non	
Tension				
_				
Courant				
	Appareil analogique			
				Volt
Potentiel	Appareil numérique		Non	
Emplacement des				
appareils de mesures				
• •	Tension		Non	
ticne securisee 4mm				
Abrésta		Oui		
Alveole sur borne	Potentiel	Oui	Non	
Polyester	Peinture RAL 7035 (gris)	Oui	Non	
Acior	Peinture RAL 7035 (gris)	Oui	Non	
Aciei	Peinture RAL 7032 (beige)	Oui	Non	
Eivation	Murale	Oui	Non	
FIXALIOII	Sur socle	Oui	Non	
	Autotransfor Semi-automatique (Por Automatique Commande 4-20mA (commande 4-20mA) Temple Semination Borne de semination Borne de semination Borne pour por	Alimentation Protection entrée Convection naturelle ou forcée Autotransformateur variable Semi-automatique (Pont mixte diodes-thyristors) Automatique (AUTO PC) Commande 4-20mA (convertisseur de mesure) Tension Courant Protections de la sortie Borne de sortie positive Borne de sortie négative Borne pour potentiel : Electrode Borne pour potentiel : Structure Tension Appareil analogique Appareil numérique Appareil numérique Appareil numérique Appareil numérique Commutateur on/off Emplacement des appareils de mesures Embase de mesure pour fiche sécurisée 4mm Alvéole sur borne Polyester Peinture RAL 7035 (gris) Peinture RAL 7035 (gris) Peinture RAL 7035 (beige) Murale	Alimentation Protection entrée Oui Convection naturelle ou forcée Ventilation Ventilateur Autotransformateur variable Semi-automatique (Pont mixte diodes-thyristors) Automatique (AUTO PC) Oui Commande 4-20mA (convertisseur de mesure) Tension Courant Protections de la sortie Borne de sortie positive Borne de sortie négative Duantité: Borne pour potentiel : Electrode Borne pour potentiel : Structure Appareil analogique Appareil numérique Oui Appareil analogique Appareil numérique Appareil numérique Oui Appareil numérique Oui Appareil numérique Oui Commutateur on/off Oui Emplacement des appareils de mesures Embase de mesure pour fiche sécurisée 4mm Alvéole sur borne Polyester Peinture RAL 7035 (gris)	Alimentation Alimentation Protection entrée Oui Non Convection naturelle ou forcée Ventilation naturelle Ventilateur + thermostat Autotransformateur variable Semi-automatique (Pont mixte diodes-thyristors) Automatique (AUTO PC) Oui Non Commande 4-20mA (convertisseur de mesure) Oui Non Tension Valeur: Courant Valeur: Protections de la sortie Oui Non Borne de sortie positive Quantité: Dimensions Borne pour potentiel : Electrode Duantité: Dimensions Borne pour potentiel : Structure Quantité: Dimensions Borne pour potentiel : Structure Quantité: Dimensions Tension Appareil analogique Appareil numérique Oui Appareil numérique Oui Non Appareil analogique Appareil numérique Oui Non Appareil numérique Oui Non Appareil analogique Appareil numérique Oui Non Appareil numérique Oui Non Appareil analogique Appareil numérique Oui Non Appareil numérique Oui Non Appareil analogique Oui Non Appareil analogique Appareil numérique Oui Non Appareil oui Non Potentiel Oui Non Alvéole sur borne Potentiel Oui Non Non Potentiel Oui Non Non Non Potentiel Oui Non Non Non Non Potentiel Oui Non Non

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043 92411 Courbevoie Cedex- France

≅ : (33) 01 47 68 75 00 ⊠ : ipsi@ipsifrance.com ∃ : (33) 01 47 89 99 39⊕ : www.ipsifrance.com

Description		Commentaire		
	Commenting on the	Tension	Oui	Non
	Convertisseur de mesure 4-20mA	Courant	Oui	Non
	mesure 4-20mA	Potentiel	Oui	Non
	Compteur horaire de	CHI - Courant	Oui	Non
	temps de protection	CHE - Potentiel	Oui	Non
	Interrupteur périodique portable CR100		Oui	Non
Options	Interrupteur périodique non synchronisé		Oui	Non
Options	Voyant vert présence tension sur porte		Oui	Non
	Voyant rouge défaut de protection cathodique		Oui	Non
	avec compteur horaire		Oui	Non
	Prise de courant + disjoncteur différentiel		Oui	Non
	Eclairage into	érieur du coffret	Oui	Non
	Résistance chauffante + hygrostat			
	(anticon	densation)	Oui	Non

Autres et commentaires:				
Quantité de Transformateurs-redresseurs:				
Vos ref:				
Réponse souhaitée pour le:				
Réponse souhaitée pour le: Nom de la société:				
Nom de la société: Responsable de la demande:				
Nom de la société:				
Nom de la société: Responsable de la demande:				
Nom de la société: Responsable de la demande: Adresse:				
Nom de la société: Responsable de la demande: Adresse: Téléphone:				

TRANSFORMATEUR REDRESSEUR **TYPE HUILE**

Alimentation monophasé 230V AC – 50 Hz Alimentation triphasé 400V AC - 50Hz Plage de tension de sortie de 50V à 150V CC Plage de courant de sortie de 50A à 250A CC Refroidissement par huile

Température ambiante de service : -5°C à +55°C

Type de régulation :

- Manuelle (autotransformateur variable)
- Semi-automatique (Pont mixte)
- Automatique asservie par AutoPC

Type de Coffret :

Coffret étanche en Acier 15 ou 20/10 peint époxy structurée RAL 7032- IP55 / IK10 (autre sur demande)

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043
92411 Courbevoie Cedex- France
3 : (33) 01 47 68 75 00
3 : (33) 01 47

ipsi@ipsifrance.com

: (33) 01 47 89 99 39

GUIDE DE SELECTION TRANSFORMATEUR - REDRESSEUR TYPE HUILE

	Description		Monophasé 230V		
Entrée	Alime	entation		asé 380-400V	
Entrée				r neutre	
	Protecti	ion entrée	Oui	Non	
	Autotransfor	mateur variable	Oui	Non	
Type de	Semi-automatique (Pont mixte diodes-thyristors)		Oui	Non	
régulation	Automatiqu	ue (AUTO PC)	Oui	Non	
	Commande 4-20mA (c	onvertisseur de mesure)	Oui	Non	
	Ter	nsion	Valeur:	Volt	
Sortie	Co	urant	Valeur:	Ampère	
	Protection	s de la sortie	Oui	Non	
_		ortie positive	Quantité:	Dimensions câble:	
Borne de sortie	Borne de sortie négative		Quantité:	Dimensions câble:	
et de mesure	Borne pour potentiel : Electrode		Quantité:	Dimensions câble:	
	Borne pour pot	tentiel : Structure	Quantité:	Dimensions câble:	
	Tension Courant	Appareil analogique	Oui	Non	
-		Appareil numérique	Oui	Non	
		Appareil analogique	Oui	Non	
-		Appareil numérique	Oui	Non	
		Appareil analogique	Oui	Non	
	Potentiel	A no a sail no sea á si aco a	si oui valeur:	Volt	
Affichage et	-	Appareil numérique Commutateur on/off	Oui Oui	Non Non	
mesure	Emplooment des		Oui	Non	
	Emplacement des appareils de mesures	sur porte dans coffret	Oui	Non	
	apparana ao moontoo	Tension	Oui	Non	
	Embase de mesure pour	Courant	Oui	Non	
	fiche sécurisée 4mm	Potentiel	Oui	Non	
		Borne de sortie	Oui	Non	
	Alvéole sur borne	Potentiel	Oui	Non	
		i oteritiei	- Oui	NOII	
Coffret	Acier	Peinture RAL 7032 (beige)		Standard	

Société Internationale de Produits et Services Industriels Societe Internationale de Produits et 102 rue J.-B. Charcot − CS 60043 92411 Courbevoie Cedex- France

: (33) 01 47 68 75 00
: ipsi@ipsifrance.com

∃ : (33) 01 47 89 99 39⊕ : www.ipsifrance.com

GUIDE DE SELECTION TRANSFORMATEUR - REDRESSEUR TYPE HUILE

		Tension	Oui	Non
	Convertisseur de mesure 4-20mA	Courant	Oui	Non
	mesure 4-20ma	Potentiel	Oui	Non
	Compteur horaire de	CHI - Courant	Oui	Non
	temps de protection	CHE - Potentiel	Oui	Non
	Interrupteur périodique portable CR100		Oui	Non
Options	Interrupteur périodique non synchronisé		Oui	Non
Options	Voyant vert présence tension sur porte		Oui	Non
	Voyant rouge défaut de protection cathodique avec compteur horaire		Oui	Non
			Oui	Non
	Prise de courant + disjoncteur différentiel		Oui	Non
	Eclairage int	érieur du coffret	Oui	Non
	Résistance chauffante + hygrostat (anticondensation)		Oui	Non

Autres et commentaires:				
Quantité de Transformateurs- redresseurs:				
Vos ref:				
Réponse souhaitée pour le:				
Nom de la société:				
Responsable de la demande:				
Adresse:				
Téléphone:				
Fax:				
E-mail:				

∃ : (33) 01 47 89 99 39 ⊕ : www.ipsifrance.com

ALARME DE POTENTIEL AP100 et AP200 Version ADF ou STANDARD

DESCRIPTIF

Les alarmes de potentiel AP100 et AP200, sont des équipements autonome, qui permettent à du personnel sans connaissance particulière en protection cathodique de contrôler visuellement le bon fonctionnement de leur système.

L'AP200 est une version équipée d'un relais à contact libre de potentiel permettant de contrôler à distance le bon fonctionnement du système.

Pour garantir l'observation d'un défaut, un acquittement « sans ouvrir le coffret » doit être réalisé pour revenir dans un état « normal ».

Ce produit est particulièrement conseillé pour la surveillance :

- Des citernes enterrées.
- Des stations-services.
- Des zones à risques.
- Des sites concentrés sur un point sans énergie.

Les alarmes de potentiel intègrent des nouvelles technologies issues du domaine de la très basse consommation et de l'optique. Les principales caractéristiques sont :

- Une interface Homme / Machine simplifiée.
- Un réglage extrêmement simplifié.
- Une Autonomie de dix ans en mode normal et d'un an en mode alarme.

Caractéristiques techniques

Е	lec	tri	qu	e

Alimentation Pile lithium 3,6V 16,4 Ah D case.

Consommation 70µA en mode normal.

1.5 mA moven en mode alarme.

Autonomie En mode normal 10ans (Durée de vie de la pile).

En mode alarme 1 an minimum (Avec pile neuve).

Protections Thermistance sur l'alimentation

Zener 3,3V sur l'entrée électrode en amont du filtre.

Entrée électrode 5V crête maxi, 3.3V moyen maxi, 0.4µA@1.2V; (ER/STRUCTURE) erreur mesure ±50mV maxi @5V, ±25mV maxi @1V.

Sortie Alarme AP200 : Relais monostable Normal Ouvert, 12V maxi 0,5W

Environnement

Température de travail : -20° à +40°. Classification de surface T6. (ADF)

Température de stockage

Divers : Zone 1 et Zone 2. (Version standard, hors zone

explosif)

Durée de vie maxi de la pile

Cycles marche/arrêt

Cycle reset/test sur champ magnétique : 10 ans Couleur voyant 10.000 cycles

Flux voyant 10.000.000 cycles Champ de vision du voyant Rouge (\lambda d 626nm)

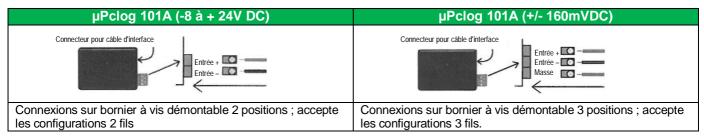
> 12000 à 16000 mcd à 6° 80° Direct, 140° indirect

Mécanique

Mecanique			
Version		AP100 – AP200 ADF	AP100 - AP200 Standard
Dimensions	:	166mm x 195mm x 109mm	121mm x 186mm x 86mm
Masse	:	2,2kg	800g
Matières	:	Alliage d'aluminium marin (AS10GY30).	ABS
Couleur	:	Peinture polyuréthane jaune RAL1003	Gris RAL7035, couvercle
			transparent
Implantation	:	Murale, fixation par 4 vis M6	Murale, fixation par 4 vis
Indice	:	Ex II 2 G - Eexd IIC T6, IP56	IP66, NEMA 4.4X, IK07

Société Internationale de Produits et Services Industriels

102 rue J.-B. Charcot – CS 60043 92411 Courbevoie Cedex- France : (33) 01 47 68 75 00


ipsi@ipsifrance.com

: (33) 01 47 89 99 39 : www.ipsifrance.com

DATA LOGGER µPclog 101A

Câblage de l'enregistreur de données

Avertissement : Respectez les polarités. Évitez de relier des fils aux mauvaises bornes.

Remarques concernant le produit

LED

La LED verte clignote : 10 secondes pour indiquer l'enregistrement de données et 15 secondes pour indiquer le mode départ différé.

La LED rouge clignote : 10 secondes pour indiquer que la batterie est déchargée et/ou la mémoire insuffisante et 1 seconde pour indiquer une condition d'alarme.

Unités techniques

Les unités de mesure de base peuvent être converties pour afficher d'autres types d'unités de mesure. Cette fonction est utilisée pour surveiller les tensions de sortie délivrées par différents types de capteurs, par exemple de température, CO₂, débit et autres.

Protection par mot de passe

Un mot de passe facultatif peut être programmé dans l'appareil afin de restreindre l'accès aux options de configuration. Les données peuvent être lues sans le mot de passe.

Activation du mode marche/arrêt multiple

Pour mettre l'appareil en marche : maintenez le bouton-poussoir enfoncé pendant 5 secondes, la LED verte clignote pendant ce temps. L'appareil commence à enregistrer des données.

Pour arrêter l'appareil : maintenez le bouton-poussoir enfoncé pendant 5 secondes, la LED rouge clignote pendant ce temps. L'appareil cesse d'enregistrer des données.

Alarmes

Seuils de tension haute et basse configurables par l'utilisateur.

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043 92411 Courbevoie Cedex- France

: (33) 01 47 68 75 00 : ipsi@ipsifrance.com

(33) 01 47 89 99 39www.ipsifrance.com

Guide d'installation

Installation du câble d'interface

- IFC200 : reliez l'appareil à un port USB. Les drivers s'installent automatiquement.

Installation du logiciel

Introduisez le CD du logiciel dans le lecteur de CD. Si le chargement automatique ne s'exécute pas, ouvrez le lecteur dans l'ordinateur et double-cliquez sur Autorun.exe. Suivez les instructions de l'assistant.

Connexion de l'enregistreur de données

- Une fois le logiciel installé et lancé, reliez le câble d'interface à l'enregistreur de données.
- Cliquez sur le menu Communication puis sur Configuration port auto.
- Au bout d'un moment, une boîte s'affiche, indiquant qu'un dispositif a été trouvé.
- Cliquez sur OK. La boîte d'état de l'appareil s'affiche. Cliquez sur OK.
- À ce stade, la communication a été configurée pour votre enregistreur. Ces réglages se trouvent dans le menu Communication.

Remarque : pour des instructions d'installation plus détaillées, reportez-vous au manuel d'utilisation de votre enregistreur de données et de son logiciel.

Fonctionnement de l'appareil

Mise en marche de l'enregistreur de données

- Cliquez sur le menu Appareil puis sur Démarrer l'appareil.
- Sélectionnez la méthode de démarrage voulue.
- Sélectionnez les paramètres de démarrage en fixant une fréquence de lecture appropriée pour votre application.
- Saisissez les éventuels autres paramètres voulus puis cliquez sur Marche.
- Une boîte s'affiche indiquant que l'enregistreur de données a démarré. Cliquez sur OK.
- Débranchez l'enregistreur de données du câble d'interface et placez-le dans l'environnement de mesure.

Remarque : L'appareil cesse d'enregistrer des données lorsque la mémoire est pleine ou que l'appareil est arrêté. À ce stade, l'appareil ne peut redémarrer qu'après avoir été réarmé par l'ordinateur.

Transfert des données d'un enregistreur de données

- Reliez l'enregistreur de données au câble d'interface.
- Cliquez sur le menu Appareil puis sur Lire les données de l'appareil. Les données sont transférées au PC.

Maintenance de l'appareil

Remplacement de la batterie

Matériel: petit tournevis cruciforme et batterie de rechange (LTC 7 PN)

- Percez le centre de l'étiquette à l'arrière de l'appareil avec le tournevis et dévissez le boîtier.
- Ôtez la batterie en la tirant perpendiculairement au circuit imprimé.
- Insérez la nouvelle batterie dans les bornes et vérifiez qu'elle est bien en place.
- Revissez le boîtier.

Remarque : évitez de trop serrer les vis, au risque de détériorer le filetage.

Modèle	μPclog 101A (-8 à + 24V DC)	μPclog 101A (+/- 160mVDC)	
Gamme		+/- 160mV CC	
Résolution	 Voir le tableau 	5µV	
Précision		+/- 0,01% PE	
Mémoire	1 000 000) mesures	
Memone	330 000 en mode m	arche/arrêt renforcé	
Bouclage		ui	
Fréquence d'échantillonnage	4 lectures par seconde (4Hz) à 1 toutes les 24 heures		
Voyant à LED	Rouge et vert		
Canaux	1		
Interface requise	IFC	200	
Débit	115 200) bauds	
Autonomie de la batterie	Typique 10 ans à 1 lectu	re toutes les 15 minutes	
Conditions ambiantes de service	-40°C à +80°C – HR 0 à	95% sans condensation	
Matériau	Plastiq	ue ABS	
Dimensions	36mm x 64r	nm x 16mm	
Homologations	C	E	

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043

102 rue J.-B. Charcot – CS 60043
92411 Courbevoie Cedex- France
(33) 01 47 68 75 00
: insi@ipsifrance.com

∃ : (33) 01 47 89 99 39→ : www.ipsifrance.com

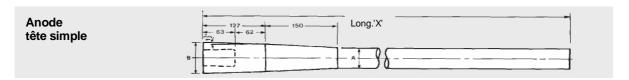
Gamme, résolution et précision d'étalonnage du modèle μPclog 101A (-8 à +24VDC)

Gamme	μPclog 101A (-8 à + 24V DC)
Précision	+/- 0,05% pleine échelle
Résolution (mV)	0,5mV
Protection contre les surcharges	+/- 50V, indéfiniment

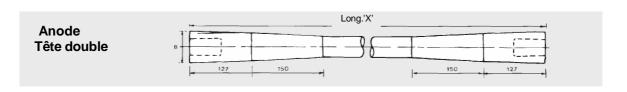
Avertissement concernant la batterie

AVERTISSEMENT: RISQUE D'INCENDIE, EXPLOSION ET BRÛLURES GRAVES. NE PAS COURT-CIRCUITER, CHARGER, DÉCHARGER EXCESSIVEMENT, DÉMONTER, ÉCRASER, PERFORER OU INCINÉRER. LA BATTERIE PEUT FUIR OU EXPLOSER SI ELLE EST PORTÉE À UNE TEMPÉRATURE SUPÉRIEURE A 80°C (176°F).

ANODES FER / SILICIUM


Les anodes Fe/Si sont conçues pour assurer une protection anticorrosion efficace des structures et des conduites en acier par la méthode des courants imposés. Elles sont fabriquées en alliage d'acier coulé à haute teneur en silicium, l'un des matériaux d'anodes les plus importants utilisés par les spécialistes de la corrosion pour protéger l'acier dans les situations les plus diverses.

Composition					
Les analyses typiques des anodes Fe/Si sont les suivantes :					
Fe/Si Fe/Si/Cr					
Silicium	14,25 à 15,25%	14,25 à 15,25%			
Manganèse	1,0% maxi	1,0% maxi			
Carbone	1,0% maxi	1,4% maxi			
Chrome	_	4,0 à 5,0%			
Fer	Reste	Reste			
Vitesses de consor	nmation typique des anoc	des Ferroline			
Environnement	Densité de courant	Vitesse de cons.			
	A/m²	kg/A an			
Eau douce	10	0,11			
Eau de mer	15	0,31			
	50	0,47			
Eau de mer 200F	10	0,41			
	10	0,+1			
Eau de mer souterraine/sable	8	0,68			


Types d'anodes

Les anodes Fe/Si sont coulées en plusieurs tailles et formes pour répondre aux exigences les plus diverses. Les dessins ci-dessous détaillent la gamme disponible. Des anodes de formes et de poids différents et avec une configuration spéciale de la tête peuvent également être fabriquées sur demande.

Anode réf.	Ø 'A' de l'anode mm (pouces)	Ø 'B' de la tête mm (pouces)	Longueur totale 'X' mm (pouces)	Poids kg
	76 (3)	100 (4)	910 (36)	32
3"	76 (3)	100 (4)	1220 (48)	33
J	76 (3)	100 (4)	1525 (60)	50
	65 (2 ½)	90 (3½)	910 (36)	24
21/2"	65 (2½)	90 (3½)	1220 (48)	31
2 /2	65 (2½)	90 (3½)	1525 (60)	38
	50 (2)	74 (3)	910 (36)	15
2"	50 (2)	74 (3)	1225 (48)	19
	50 (2)	74 (3)	1525 (60)	23
	39 (1½)	64 (2½)	910 (36)	10
11/2"	39 (1½)	64 (2½)	1220 (48)	13
	37 (1½)	64 (2½)	1525 (60)	15
1"	30 (1)	40 (1½)	300 (12)	2

Les poids et dimensions indiqués sont des valeurs nominales.

 Société Internationale de Produits et Services Industriels

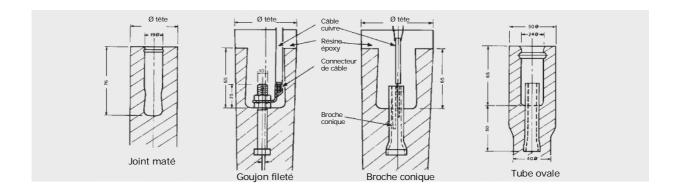
 102 rue J.-B. Charcot – CS 60043

 92411 Courbevoie Cedex- France

 2 : (33) 01 47 68 75 00

 3 : (33) 01 47 68 75 00

ipsi@ipsifrance.com


: (33) 01 47 89 99 39 : www.ipsifrance.com

Spécification

IPSI fournit une gamme étendue d'anodes tubulaires en matériau Fe/Si et Fe/Si/Cr. Les anodes tubulaires possèdent une connexion par câble centrale qui dans certaines applications permet d'éviter les effets d'extrémité et d'assurer une consommation plus uniforme.

anodes

Connexion par câble des II existe quatre types de connexion des câbles, la version à joint maté étant standard. Si nécessaire, des réalisations spéciales sont possibles. Les formats standards sont détaillés ci-dessous.

Capuchons d'anodes

Des capuchons d'anodes peuvent être montés en usine sur les anodes câblées. Ils ont pour but de contrer l'effet dit d'extrémité lorsqu'une connexion d'un seul côté des anodes est spécifiée. Ces capuchons possèdent un revêtement protecteur en polymère capable de résister à des conditions environnementales corrosives, y compris les agressions dues au chlore et aux sulfates. Ils sont fabriqués en polyéthylène réticulé et fixés par rétraction sur l'extrémité de l'anode. Leur rigidité diélectrique est de 10 kV par mm.

Câbles

Les anodes Fe/Si peuvent aussi être fournies pré-assemblées avec les câbles reliés à la pièce coulée et surmoulés avec de la résine. Différents types et sections de câbles peuvent être fournis, les versions standard sont équipées de câbles de 6, 10, 16 et 25 mm² pour s'adapter à tous les environnements. En standard, les câbles ont un isolant XLPE/PVC. Les fiches techniques des câbles sont disponibles sur demande.

Anodes en canister

Les anodes Fe/Si peuvent aussi être fournies encapsulées dans des gaines en acier galvanisé complètes avec backfill. Détails disponibles sur demande.

ANODES EN MAGNÉSIUM

Applications des anodes en magnésium protection cathodique

Parmi les matériaux utilisés pour fabriquer des anodes sacrificielles, le magnésium est celui dont la tension de polarisation dynamique est la plus élevée et il est le plus souvent utilisé pour les installations à terre (dans des électrolytes plus résistifs) où l'emploi de zinc et d'aluminium ne serait pas économique. Les applications les plus courantes sont les suivantes :

Systèmes de PC temporaires

- Protection temporaire des conduites terrestres et autres pendant leur construction et avant la mise sous tension du système à courant imposé.
- Détartrage de réservoirs.
- Protection externe des coques de navires séjournant dans l'eau douce ou saumâtre.

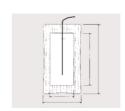
Systèmes de PC permanents

- Conduites terrestres.
- Surfaces extérieures de cuves de stockage enterrées, notamment des réservoirs de produits pétroliers dans des zones à risques
- Conduites de faible longueur comportant des passages de cours d'eau.
- Canalisations de desserte de locaux domestiques commerciaux
- Surfaces extérieures de caissons dans l'eau douce ou saumâtre.
- Surfaces intérieures de réservoirs d'eau et de stations de traitement.

Alliages disponibles

Les anodes en magnésium sont disponibles avec plusieurs compositions chimiques différentes mais en deux types génériques de base avec des tensions de sortie d'environ 1,55 et 1,75 V (par rapport à une électrode de référence cuivre/ sulfate de cuivre).

	2 11 (2 (2 22)	
	Sortie (Cu/CuSO ₄)	
	BAS POTENTIEL 1,55 V	HAUT POTENTIEL 1,75 V
Composition chimique		
Aluminium	5,3-6,7%	0,01% maxi
Zinc (Zn)	2,5-3,5%	-
Cuivre (Cu)	0,08% maxi	0,02% maxi
Silicium (Si)	0,3% maxi	0,05% maxi
Manganèse (Mn)	0,25% min	0,5-1,3%
Fer (Fe)	0,005% maxi	0,03% maxi
Plomb (Pb)	0,03% maxi	-
Autres impuretés, chacune	_	0,05% maxi
Total autres impuretés	_	0,30% maxi
Magnésium	Reste	Reste
Capacité (Ah/kg)	1230	1230


Forme des anodes

Des anodes d'excellente qualité peuvent être livrées en version circulaire (coulée verticale) ou en forme de D (coulée horizontale).

Schéma 1 Anode en D

Schéma 2 Anode circulaire

Anodes pré-backfillées

Les anodes utilisées pour les conduites, les cuves et les réservoirs enterrés sont généralement fournies pré-conditionnées dans un sac en coton entouré d'un backfill. L'environnement créé par le backfill aide à générer un courant de sortie et une vitesse de dissolution

plus uniformes et il abaisse la résistance de l'électrolyte. Les anodes utilisées dans des sols à faible résistivité peuvent être fournies nues.

Composition du backfill

Gypse en poudre 75% Bentonite 20% Sulfate de sodium 5%

Poids et dimensions

Toutes les anodes sont coulées uniquement suivant les plans de fabrication les plus récents. Les dimensions et les poids des pièces coulées sont des valeurs nominales qui sont sujettes aux tolérances de fonderie.

Les dimensions et les poids des anodes conditionnées sont sujets aux tolérances de production et les valeurs indiquées peuvent varier par suite du tassement lors du transport et de la manipulation.

Anodes en magnésium circulaires nues

Réf.		1,55 V			1,75 V	
	Poids net	Diam.	Long.	Poids net	Diam.	Long.
	kg	mm	mm	kg	mm	mm
C036	3,6	114	193	3,6	114	202
C041	4,1	114	220	4,1	114	230
C050	5,0	114	268	5,0	114	277
C077	7,7	114	412	7,7	114	431
C100	10	114	536	10	114	560
C145	14,5	146	472	14,5	146	494
C227	22,7	178	497	22,7	178	520
C273	27,3	178	598	27,3	178	625
C274	27,3	114	1462	27,3	114	1528

Anodes en magnésium en forme de D nues

Réf.		1,55 V e	et 1,75 V	
	Poids net	Cote A (schéma 2)	Cote B (schéma 2)	Longueur
	kg	mm	mm	mm
D023	2,3	70	64,5	305
D032	3,2	70	64,5	430
D041	4,1	70	64,5	550
D0635	6,35	70	64,5	850
D077	7,7	90	83	650

Anodes en magnésium circulaires pré-backfillées

Réf.	Poids brut	Diamètre	Longueur
	kg	mm	mm
C036P	7	150	425
C041P	9	150	480
C050P	11	150	535
C077P	15	150	580
C100P	22	165	660
C145P	30	190	840
C227P	45	255	760
C273P	50	255	915
C274P	50	165	1880

Anodes en magnésium en forme de D pré-backfillées

Réf.	Poids brut	Diamètre	Longueur
	kg	mm	mm
D023P	5	150	500
D032P	7	150	580
D041P	9	150	700
D0635P	14	150	1040
D077P	16	200	1000

Câble

Le client peut spécifier la taille et le type du câble de liaison. Nous recommandons 3 mètres de câble de protection cathodique KATHODICA™ rouge/rouge à conducteurs en cuivre de 6 mm² à âme simple multibrins sous isolant XLPE et gaine PVC, qualité 600/1000 V suivant CEI 502/83 & BS 5467, qui convient pour la plupart des applications.

RUBAN EN MAGNESIUM

Parfois utilisé à la place des anodes de service, le ruban en magnésium est extrudé en alliage à potentiel de 1,75 V et il est généralement livré par bobines entières (305 m). Des longueurs plus courtes peuvent être fournies sur demande.

Composition chimique

Aluminium (AI) 0,01% maxi Cuivre (Cu) 0,02% maxi Manganèse (Mn) 0,5-1,3% Fer (Fe) 0,03% maxi Niobium (Ni) 0,001% maxi Autres impuretés, chacune 0.05% maxi Magnésium Reste Capacité (Ah/kg) 1230

Dimensions nominales (mm) 19 x 9,5 Âme Ø 3,4 mm Barreau acier Poids nominal 0,361 kg/m (0,242 lb)

Courant de sortie par m de longueur, environ) :

Eau de mer (25 ohm.cm) 2,5 A Sol (5 000 ohm.cm) 12 mA Eau douce (15 000 ohm.cm) 4 mA

ANODES TUBULAIRES LIDA®

Les anodes tubulaires LIDA® sont constituées de tubes en titane dotés d'un revêtement en oxyde métallique mixte. Cet oxyde métallique mixte est un revêtement cristallin, électriquement conducteur, qui active le titane et lui permet de faire fonction d'anode.

L'anode en oxyde métallique mixte présente une vitesse de consommation extrêmement basse, de l'ordre de quelques milligrammes par ampère-an, de sorte que les dimensions du tube restent pratiquement constantes pendant toute la durée de vie de l'anode, assurant ainsi une anode faiblement résistive à long terme.

Dans la terre, l'eau douce, la boue ou l'eau de mer, les revêtements en oxyde métallique mixte LIDA[®] présentent une excellente stabilité chimique, même dans des environnements à pH très bas. Au contraire d'autres anodes à courant imposé, les revêtements LIDA[®] ne sont pas affectés par le dégagement de chlore.

AVANTAGES

- Réduction considérable du coût des câbles
- Réduction des coûts de manipulation et d'installation
- · Coût par ampère-heure réduit
- Contact électrique et intégrité des joints anti-humidité garantis
- Anode faiblement résistive à long terme

CARACTÉRISTIQUES

- Conducteur multi-anodes
- · Légère / durable
- Intensité de sortie élevée
- · Connexions serties brevetées
- Stabilité dimensionnelle

APPLICATIONS

· Lits d'anodes

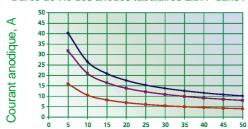
Profonds Verticaux peu profonds Horizontaux à puits ouvert

Marine

Eau de mer Eau saumâtre Boue

Eau douce

		CARA	CTERISTIC	UES TECHNIQU	JES		
ANODE	DIAMETRE		LONGUEUR		POIDS	SUPERFICIE	
	Cm	Pouces	Cm	Pouces	kg	m²	
2,5 x 50	2,5	1,00	50	19,7	0,18	0,039	
2,5 x 100	2,5	1,00	100	39,4	0,35	0,079	

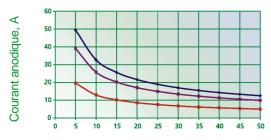

Intensité maximale pour les anodes tubulaires LIDA® (Durée de vie en années)

Durée de vie des anodes tubulaires LIDA® dans l'eau de mer

Les anodes LIDA® 2,5 x 100 XXL sont prévues pour une utilisation prolongée.

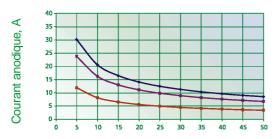
Durée de vie des anodes tubulaires LIDA® dans l'eau douce

Durée de vie en années

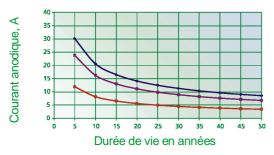

Société Internationale de Produits et Services Industriels

102 rue J.-B. Charcot − CS 60043 92411 Courbevoie Cedex- France : (33°) 01 47 68 75 00

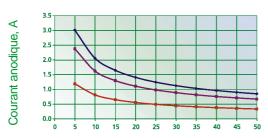
: ipsi@ipsifrance.com


: (33) 01 47 89 99 39 : www.ipsifrance.com

Durée de vie des anodes tubulaires LIDA® dans l'eau saumâtre


Durée de vie en années

Durée de vie des anodes tubulaires LIDA® dans la boue



Durée de vie en années

Durée de vie des anodes tubulaires LIDA® dans le coke

Durée de vie des anodes tubulaires LIDA® dans le sable

Durée de vie en années

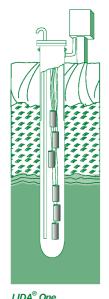
Le "chapelet d'anodes" LIDA[®] se compose d'un câble électrique enfilé dans une ou plusieurs anodes tubulaires. La connexion électrique entre l'anode et le câble est assurée par un procédé de sertissage mécanique breveté. Cette connexion sertie est également utilisée pour sceller l'anode autour du câble aux deux extrémités.

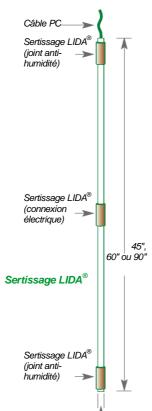
Étant donné qu'un seul câble dépasse du trou, l'utilisation d'un chapelet LIDA® permet de supprimer la boîte de jonction, ce qui réduit le coût matière et main d'œuvre.

Les ensembles chapelets peuvent également être fournis dans une configuration en boucle fermée avec deux queues ou sous la forme de chapelets multiples étagés pour assurer la redondance du système et une distribution de courant maximale dans l'ensemble du lit d'anodes.

De Nora conseille d'utiliser un remblai charbonneux conducteur de grande qualité, un tuyau d'évent, des Ventralizers™, un câble adéquat, de mettre en œuvre de bonnes pratiques de conception, et de bien appréhender le problème à résoudre.

AVANTAGES


Sertissage LIDA® - Bon nombre d'anodes à courant imposé sont reliées au câble par des scellements à base de résines, qui peuvent se fissurer ou perdre leur adhérence au câble ou à l'anode. L'humidité peut y pénétrer, d'où une perte de contact électrique. La connexion des anodes LIDA® est réalisée par un procédé de sertissage spécial qui accroît la durée de vie du système d'anodes tubulaires.


En surface, les sertissages semblent identiques aux extrémités et au milieu mais ils répondent à des objectifs différents et ils sont réalisés différemment. Le sertissage central établit le contact électrique avec le câble tandis que les sertissages des extrémités créent un joint résistant à l'humidité. La connexion électrique entre l'anode tubulaire et le conducteur du câble de puissance est réalisée en faisant glisser le tube sur le câble et en sertissage une partie du tube à mi-longueur autour d'un segment de câble dénudé.

Les deux extrémités de l'anode tubulaire sont scellées sur le câble isolé en appliquant une pression hydraulique de 50 tonnes. Ce sertissage supprime la nécessité de mastics ou résines d'étanchéité.

: ipsi@ipsifrance.com

ANODES LIDA® One

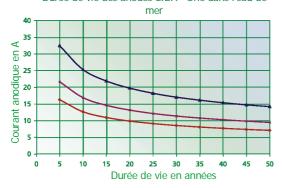
Le concept "anode unique" Une anode, un câble – c'est aussi simple que cela.

Les anodes LIDA[®] One sont les dernières nées de la famille de produits à base d'anodes en oxyde métallique mixte, spécialement conçus pour la protection cathodique des structures enterrées.

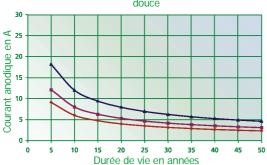
Destiné à des installations où une seule anode montée en chapelet est préférée pour les lits d'anodes dans des sols présentant des résistivités très variables, leur revêtement en oxyde métallique mixte est spécialement formulé en vue d'une utilisation dans un remblai charbonneux.

L'anode LIDA® One se compose d'un tube en titane de 1" de diamètre doté d'un revêtement en oxyde de métal précieux. Cet oxyde métallique mixte forme un revêtement cristallin électriquement conducteur qui active le titane et lui permet de faire fonction d'anode. Lorsqu'il est déposé sur du titane, le revêtement présente une vitesse de consommation extrêmement basse, de l'ordre de quelques milligrammes par an. Grâce à cette faible vitesse de consommation, les dimensions du tube restent pratiquement constantes pendant toute la durée de vie calculée de l'anode, ce qui assure en permanence à l'anode une faible résistance.

En augmentant la longueur de l'anode tubulaire tout en réduisant le débit de courant total, il a créé une nouvelle gamme d'anodes en oxyde métallique mixte fiables et permettant des économies encore plus grandes par rapport aux technologies concurrentes. Comme pour toutes les anodes tubulaires en oxyde métallique mixte, grâce à la combinaison d'un produit robuste et léger avec une manipulation et une installation faciles, des connexions mécaniques de qualité supérieure et une garantie sans tracas de cinq ans, les anodes LIDA® One sont des anodes offrant des performances PC inégalées.


CARACTÉRISTIQUES

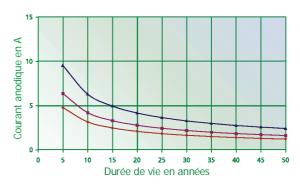
- Conçues pour être utilisées comme anode unique
- Robustes, pas de casse ni détérioration lors du transport vers le chantier
- Joint anti-humidité serti spécial évitant la détérioration des connexions électriques
- Pas de fils, pas de surmoulage époxyde

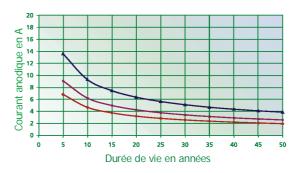

Nous contacter en cas d'installation prévue dans des eaux de température inférieure à 5°C.

Anodes LIDA® One

Durée de vie des anodes LIDA® One dans l'eau de

Durée de vie des anodes LIDA® One dans l'eau douce


Durée de vie des anodes LIDA® One dans l'eau saumâtre


Intensité maximale admissible pour les anodes LIDA® One (durée de vie en années)

Durée de vie des anodes LIDA® One dans la boue

Durée de vie des anodes LIDA® One dans le coke

Durée de vie des anodes LIDA® One dans le sable

Dans les sols ou les boues riches en chlorures, il est nécessaire d'utiliser un câble adapté, résistant au chlore. Nous contacter en cas d'installation prévue dans des eaux de température inférieure à 5°C.

LIDA® PACK

Anode filaire en canister LIDA® Pack

Câble d'anode Résine époxyde Connexion sertie soudée à l'argent, protégée par deux manchons thermorétractables Centreur Anode filaire LIDA® (Ø 1,5 mm ou 3 mm avec âme cuivre) Canister en acier galvanisé Centreur Résine époxyde Le fil LIDA® est mis à la masse du canister afin de garantir une faible résistance électrique

Anodes filaires en canister

Les anodes filaires en canister **LIDA**[®] **Pack** représentent l'anode à courant imposé idéale pour les lits d'anodes verticaux peu profonds et horizontaux de surface, ainsi que pour les sols humides, marécageux, susceptibles de présenter de s'effondrer.

Construction des anodes – Le principal élément d'un LIDA[®] est une anode filaire en oxyde métallique mixte. L'anode filaire se compose d'un revêtement en oxyde de métal précieux déposé sur un fil de titane à âme en cuivre. Le revêtement oxydique est parfaitement stable et insensible à la corrosion, comme dans le cas des anodes de type massif classique, par exemple en fer/silicium, en graphite, voire en platine.

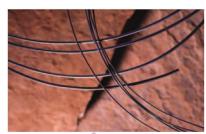
L'élément anodique stable fait passer le courant dans un backfill de coke de pétrole calciné hautement conducteur, tassé de manière compacte à l'intérieur d'un canister en acier galvanisé. Pour permettre à l'humidité de migrer rapidement dans le backfill en coke et accroître ainsi la conductivité électrique, l'anode filaire est électriquement reliée au canister en acier, ce qui accélère la vitesse de corrosion du canister une fois l'anode installée et sous tension.

Pour passer commande, spécifier les longueurs et les types de câbles.

APPLICATIONS

- Réservoirs de stockage enterrés
- Réservoirs de stockage aériens
- Pipelines

CARACTÉRISTIQUES / AVANTAGES

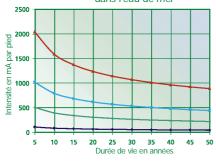

- Légère
- Facile à manipuler et installer
- Réduit les coûts de terrassement et de forage
- · Garantie cinq ans sans conditions

DIMENSIONS

Modèle	Poids sans câble lbs (kg)	Courant délivré à 20 ans A	Durée de vie du backfill A - an
LP 3 x 40 S	18 (8,17)	0,6	4,8
LP 3 x 60 S	27 (12,26)	1,0	7,5
LP 3 x 80 S	36 (16,34)	1,4	10,3
LP 3 x 40 H	18 (8,17)	1,3	4,8
LP 3 x 60 H	27 (12,26)	2,0	7,5
LP 3 x 80 H	36 (16,34)	2,8	10,3

[&]quot;S" indique un fil de 1,5 mm, "H" un fil de 3 mm

ANODES FILAIRES LIDA®



Anodes filaires LIDA®

Intensité maximale admissible pour différentes anodes filaires LIDA® (durée de vie en années)

Durée de vie des anodes filaires LIDA® dans l'eau de mer

→ 1,5 mm légère → 1,5 mm standard → 1,5 mm XL Les anodes filaires LIDA® sont constituées d'un fil de cuivre et de titane doté d'un revêtement en oxyde métallique mixte. L'oxyde métallique mixte forme un revêtement cristallin électriquement conducteur qui active le titane et lui permet de faire fonction d'anode.

Les anodes filaires LIDA® sont fabriquées en deux diamètres : 1,5 et 3,0 millimètres.

Lorsqu'il est déposé sur du titane, le revêtement présente une vitesse de consommation extrêmement basse, de l'ordre de quelques milligrammes par an. Grâce à cette faible vitesse de consommation, le diamètre du fil reste pratiquement constant pendant toute la durée de vie de l'anode.

La faible vitesse de consommation du revêtement en oxyde métallique mixte aux densités de courant recommandées en service se traduit par des durées de vie calculées de 15 à 20 ans pour les anodes. Des durées de vie plus longues ou plus courtes peuvent être obtenues en faisant varier le débit de courant par unité de longueur de fil.

Revêtement des anodes - Le revêtement utilisé sur le fil convient pour la plupart des applications de protection cathodique mais le débit varie en fonction de l'application. Le revêtement en oxyde métallique mixte LIDA® se caractérise par une très grande stabilité chimique, même dans des environnements dont les valeurs de pH sont très basses. Au contraire d'autres anodes à courant imposé, le revêtement LIDA® n'est pas affecté par le dégagement de chlore.

Connexion des fils - Une connexion typique entre l'anode filaire LIDA® et un câble de raccordement est utilisée avec succès dans des anodes en canister.

APPLICATIONS

- · Anodes en canister
- · Lits d'anodes horizontaux continus
- Lits d'anodes horizontaux discontinus
- Lits d'anodes verticaux pour puits peu profonds
- · Lits d'anodes pour puits profonds
- Réservoirs de stockage aérien
- Réservoirs de stockage souterrain
- Eau naturelle
- Blindage de câbles électriques
- Réservoirs de stockage d'eau
- Équipements de traitement de l'eau

Dimensions:

	rètre de ominal		nce sur mètre	Tita	ine	Cui	vre	Aire de act	surface ive	Poi	ds
(mm)	(pouces)	(mm)	(pouces)	% en poids	% en volume	% en poids	% en volume	ft²/ft de longueur	mm²/mm de long.	lbs/ft	g/m
1,5	0,062	+0,15 -0,00	+0,007 -0,000	36,1	52,7	63,9	47,3	0,017	5,1 E–03	0,009	13,7
3,0	0,118	+0,28 -0,00	+0,010 -0,000	17,1	29,0	82,9	71,0	0,033	1,0 E–02	0,042	62,5

Intensité maximale admissible pour différentes anodes filaires LIDA® (durée de vie en années)

Durée de vie des anodes filaires LIDA® dans du sable

→ 1,5 mm légère → 1,5 mm standard → 1,5 mm XL

Des anodes filaires LIDA[®] en titane sans âme en cuivre, de 1,5 et 3 mm de diamètre, sont disponibles sur demande. Résistivité contre longueur – Une distribution adéquate du courant est un critère important pour la conception et l'utilisation correctes d'une anode filaire pour chaque application. Par exemple, si on veut avoir une chute de tension dans le fil de 10% ou moins pour une distribution adéquate du courant dans de l'eau à 1000 ohm-cm, il ne faut pas dépasser une longueur de 45 pieds (13,7 m) pour les segments d'anode entre les connexions électriques d'un câble de raccordement lorsqu'on utilise le fil de 1,5 mm de diamètre. À titre de comparaison, le fil de 3,0 mm de diamètre permet d'utiliser des segments de 110 pieds (33,5 m) tout en conservant la chute de tension de 10% souhaitée.

Comme pour n'importe quel conducteur électrique, la température de service du fil influe sur sa résistance. Le tableau ci-dessous indique l'effet exercé sur le fil, en supposant que celui-ci fonctionne à la température de l'électrolyte qui l'entoure. La variation de la résistivité modifie également l'intensité maximale admissible dans le fil.

Économies – Dans bien des cas, les anodes filaires à revêtement en oxyde métallique mixte LIDA® permettent de réaliser des économies en termes de coût installé par rapport aux anodes concurrentes. Ceci est rendu possible par le compromis entre la densité de courant élevée permise par les revêtements en oxyde métallique mixte et la possibilité d'ajuster sur mesures les durées de vie souhaitées.

Souplesse d'utilisation – Les anodes filaires LIDA[®] peuvent être utilisées dans un large éventail d'applications de protection cathodique. Leur légèreté et leur malléabilité permettent de réaliser des configurations complexes. L'âme en cuivre assure une conductivité élevée et donc une meilleure distribution du courant sur toute la longueur du fil.

Diamètre du fil en mm	1,5	3,0
Résistivité en ohm/m à 25°C	0,0174	0,003
Résistivité en ohm/m à 70°C	0,0204	0,0035
Intensité maximale dans le fil à 25°C, A	21	36
Intensité maximale dans le fil à 70°C, A	7	12

POUSSIERE DE COKE - BACKFILL

La performance des anodes en protection cathodique est mise en valeur par une sélection accrue du backfill qui fournira une faible résistivité au sol pour un coût minime.

Définit pour la performance :

Les caractéristiques clés pour définir un backfill convenable sont :

- Densité apparente
- Résistivité
- Porosité
- **Ecoulement**
- Pureté

Bénéfices

- Faible densité apparente
- Faible résistivité
- Importante porosité
- Bon écoulement
- Pureté faible teneur en sulfure minimisant les risques de corrosion

Spécifications

Calibre 0-10mm

Humidité 12 - 15%Cendres/sec 11 - 14.5% M. Vol/sec 1.8 - 2.1%Soufre/sec 0,6% - 0.7%

Conditionnement

Le backfill est fournit dans une caisse de 40 sacs de 25kg, soit 1 Tonne.

Disponibilité

Stock important afin d'assurer une réponse rapide aux conditions de livraison de nos clients.

ELECTRODE DE REFERENCE PORTABLE BORIN Stelth 3

CARACTÉRISTIQUES:

- L'électrode de référence portable Stelth 3 est destinée à être utilisée comme une demi-pile.
- Ce dispositif entièrement monolithique ne nécessite aucune recharge, nettoyage ou entretiens.
- Une durée de vie utile de 10 ans minimum.
- Une durée de stockage et de stabilité sans limite de péremption.
- Un "piège à ions" à la pointe de la technologie empêche la contamination de l'électrolyte Cu/CuSO4.
- Ne nécessite aucune maintenance.
- Le boîtier d'électrode en Lexan® antichoc ne se dégrade pas dans des environnements fortement corrosifs.
- Fournie avec une notice d'utilisation détaillée.

Dimensions: diamètre 25mm (1") et d'une longueur de 203mm (8").

Matériaux : ABS antichoc, céramique avec une membrane retenant l'humidité.

Stabilité: ± 10 mV pour un courant de charge de 3,0 µA.

Gamme de température : -23° à 80° C

Électrode Stelth modèle SRE-010-CPY

Cuivre/sulfate de cuivre (Cu/CuSO₄)

Électrode Stelth modèle SRE-011-SPB

Argent/chlorure d'argent (Ag/AgCI)


Électrode Stelth modèle SRE-012-ZPR

Zinc/sulfate de zinc (Zn/ZnSO₄)

ELECTRODE DE REFERENCE PORTABLE BORIN Stelth 4

CARACTÉRISTIQUES:

- L'électrode de référence portable Stelth 4 est destinée à être utilisée comme une demi-pile.
- Ce dispositif entièrement monolithique ne nécessite aucune recharge, nettoyage ou entretiens.
- Une durée de vie utile de 10 ans minimum.
- Une durée de stockage et une stabilité sans limite de péremption.
- Un "piège à ions" à la pointe de la technologie empêche la contamination de l'électrolyte par les chlorures.
- Ne nécessite aucune maintenance
- Le boîtier d'électrode en plastique antichoc ne se dégrade pas dans des environnements fortement corrosifs.
- Fournie avec une notice d'utilisation détaillée.

Dimensions: Diamètre de 57mm (2,25") et d'une longueur de 102mm (4").

Stabilité: ± 10 mV pour un courant de charge de 3,0 µA.

Gamme de température : -23° à 80° C

Électrode Stelth modèle SRE-013-CPY

Cuivre/sulfate de cuivre (Cu/CuSO₄)

Électrode Stelth modèle SRE-014-SPB

Argent/chlorure d'argent (Ag/AgCI)

Électrode Stelth modèle SRE-015-ZPR

Zinc/sulfate de zinc (Zn/ZnSO₄)

ELECTRODE DE REFERENCE PORTABLE

Généralités : Électrodes de référence au sulfate de cuivre

Les électrodes de la série RE apportent trois types d'améliorations par rapport aux autres électrodes jusqu'alors disponibles :

- ✓ un tube en lexan
- ✓ un embout en céramique
- ✓ un bouchon supérieur solide avec une tige de cuivre haute pureté

Les embouts en céramique offrent de multiples avantages, parmi lesquels :

- ✓ L'embout en céramique a une porosité uniforme et contrôlée.
- ✓ L'embout se caractérise par un mouillage rapide et l'électrode peut être utilisée dans les minutes qui suivent le remplissage, alors qu'il faut souvent plusieurs heures pour mouiller un embout en bois.
- L'embout est prétraité de façon à garantir une résistance électrique moindre, qui reste faible aussi longtemps que l'embout est humidifié par de la solution saturée de sulfate de cuivre.
- ✓ Un embout peut sécher complètement et être à nouveau mouillé en quelques minutes avec la même faible résistance.
- ✓ Les tests montrent qu'il n'est pas nécessaire de couvrir l'embout pour l'empêcher de sécher quand il n'est pas en service. Néanmoins, il est souhaitable de le faire. Un capuchon protecteur est prévu à cet effet.

Embout électrode RE5

Embout électrode RE5-C



La couleur orange brillant du tube en lexan a été choisie de façon que l'électrode se voie facilement dans l'herbe et pour aider à la repérer lorsqu'elle est placée à distance ou lorsqu'elle s'est détachée du fil de "tirage". Certains de ses autres avantages sont les suivants :

- ✓ Le tube en lexan utilisé dans les électrodes modèles RE-5 et RE-5C est extrudé en deux couleurs, orange et transparent. L'orange est opaque, formant un écran solaire. Le segment qui s'étend sur la longueur de l'électrode constitue une fenêtre de contrôle visuel qui permet d'observer l'état et le niveau de la solution de sulfate de cuivre. Cette fenêtre est à nos yeux essentiels pour maintenir l'électrode en bon état.
- Le tube en lexan est très résistant aux dommages mécaniques. Il peut être maltraité, s'enfoncer dans un sol mou, tomber et être transporté dans une boîte à outils sans se casser.

L'embout poreux plat de grand diamètre (76 mm) permet une plus grande surface de contact. L'embout plat assure une résistance de contact inférieure à celle d'un embout arrondi ou strié lorsqu'il est posé en contact direct avec des surfaces planes. Particulièrement utile sur les chaussées, le trottoir, le sable sec, le sol gelé, etc.

Dimensions: Ø 76 mm x longueur 127 mm. Poids sec 454 g.

Electrode RE-3A

Similaire au modèle RE-5 mais fournie avec un embout poreux de forme conique. Pour utilisation dans les sols mous. Assure une résistance de contact plus faible. Lorsqu'elle est enfoncée dans un sol mou, la forme de l'embout aide l'électrode à "se tenir droite".

Dimensions: Ø 35 mm x longueur 172 mm. Poids sec 141 g.

Modèle standard, embout poreux plat, pour usage général dans le sol et avec adaptateur immergeable pour utilisation dans l'eau. Dimensions : Ø 35 mm x longueur 153 mm. Poids sec 114 g

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043

92411 Courbevoie Cedex- France

: (33) 01 47 68 75 00 : ipsi@ipsifrance.com

∃ : (33) 01 47 89 99 39→ : www.ipsifrance.com

ELECTRODE DE REFERENCE PERMANENTE BORIN Stelth 2 – Installation enterrée & béton

Électrode Stelth modèle SRE-007-CUY

Cuivre/sulfate de cuivre (Cu/CuSO₄) Pour une installation enterrée ou noyée dans le béton pour un électrolyte sans chlorures.

Électrode Stelth modèle SRE-008-SUB

Argent/chlorure d'argent (Ag/AgCl) Pour une installation enterrée ou noyée dans le béton pour un électrolyte *avec chlorures*.

Électrode Stelth modèle SRE-009-ZUR

Zinc/sulfate de zinc (Zn/ZnSO₄) Pour une installation enterrée ou noyée dans le béton pour un électrolyte sans chlorures.

CARACTÉRISTIQUES:

- Une durée de vie utile de 30 ans minimum.
- 180 cm² de surface de contact, soit 9 à 35 fois plus que les autres électrodes, ce qui rend le positionnement des électrodes moins critique pour l'efficacité des mesures.
- Ne se dessèchent pas dans un terrain désertique, là où d'autres électrodes sont inefficaces. Les variations cycliques des conditions géologique, allant d'un sol hydraté à déshydraté, n'ont pas d'effets sur l'électrode Stelth 2.
- Les électrodes peuvent être mise du service pendant des durées prolongées et réintroduites dans le système sans affecter leur précision ni leur capacité de réactivation. (L'électrode s'active en moins de cinq minutes.)
- L'électrode Stelth 2 utilise deux niveaux technologique de piégeage des ions chlorure :
- 1) un matériau de piégeage imprégnant le poreux en céramique piège les ions de chlorure avant qu'ils atteignent la solution chimique de l'électrode Stelth 2 (brevet déposé).
- 2) un système de piégeage élimine les ions chlorure qui pénètrent dans la solution CuSO4 de l'électrode Stelth 2 avant que ces ions aient le temps de provoquer des dégradations.
- Ces deux systèmes ont pour avantage d'abaisser la résistance interne de l'électrode de référence Stelth 2.
- Remarque : un taux de chlorures de seulement 200 ppm entraînent des altérations de la chimie d'une électrode de référence Cu/CuSO4 et provoque une défaillance complète de celle-ci.

Dimensions: de diamètre 40 mm (1,5") et de longueur 180mm (7").

Câble de raccordement : 15 m de fil RHH-RHW AWG 14 (1 x 2,5 mm²).

Matériau : céramique avec membrane retenant l'humidité.

Stabilité: 5 mV sur un courant de charge de 3,0 µA.

Gamme de température : -23° à 80° C

ELECTRODE DE REFERENCE PERMANENTE AVEC COUPON - BORIN Stelth 7

CARACTÉRISTIQUES:

- Les électrodes de référence Stelth 7 ont été développées pour effectuer des mesures hors potentiel et sous potentiel sur une structure sans avoir à stopper ou débrancher des systèmes interférents tels que le redresseur de votre propre système, d'autres redresseurs situés à proximité, des trains et métros électriques, des lignes de transport d'électricité, etc. afin de mesurer uniquement le plus mauvais potentiel individuel présent sur cette structure.
- Les électrodes de référence Stelth 7 ont une durée de vie de 30 ans minimum et une durée de stockage sans limite de péremption.
- Les électrodes de référence Stelth 7 conservent une stabilité de 5 mV pour une impédance de 20 mégohms et sur une durée de 30 ans.
- Les électrodes de référence Stelth 7 fonctionnent dans tout type de sol et d'eau, des sols secs des déserts aux zones inondables, marécageuses, les environnements marins et eau douce.
- Permettent d'effectuer des mesures « off » sur des redresseurs à sorties de forte intensité au-delà du pouvoir de coupure des interrupteurs actuellement disponibles sur le marché.
- À présent, l'électrode Stelth 7 et l'interrupteur Bullet® Box IR Free vous permettent de mesurer le courant nécessaire pour protéger le défaut de revêtement.
- Réutilisables et démontables.
- Poids d'expédition de 1,4 kg.

Dimensions: de diamètre 60mm (2,25") et de longueur 220mm (8,5").

Matériaux : ABS antichoc, céramique avec membrane retenant

l'humidité.

Stabilité: 5 mV pour un courant de charge de 3,0 µA.

Gamme de température : -23° à 80° C

Livré avec : interrupteur Bullet Box® IR Free (sur demande)

Électrode Stelth 7 IR FREE Probe modèle SRE-022-CIY

Cuivre/sulfate de cuivre (Cu/CuSO₄) Electrode avec coupon de 1 cm²

Électrode Stelth 7 IR FREE Probe modèle SRE-023-CIY

Cuivre/sulfate de cuivre (Cu/CuSO₄) Electrode avec coupon de 10 cm²

Électrode Stelth 7 IR FREE Probe modèle SRE-024-CIY

Cuivre/sulfate de cuivre (Cu/CuSO₄) Electrode avec coupon de 50 ou 100 cm²

: ipsi@ipsifrance.com

ELECTRODE DE REFERENCE PERMANENTE **AVEC COUPON - BORIN Stelth 7 Rocket**

CARACTÉRISTIQUES:

- Les électrodes de référence Stelth 7 Rocket ont été développées pour effectuer des mesures hors potentiel et sous potentiel sur une structure sans avoir à stopper ou débrancher des systèmes interférents tels que le redresseur de votre propre système, d'autres redresseurs situés à proximité, des trains et métros électriques, des lignes de transport d'électricité, etc. afin de mesurer uniquement le plus mauvais potentiel individuel présent sur cette structure.
- Les électrodes de référence Stelth 7 Rocket ont une durée de vie de 30 ans minimum et une durée de stockage sans limite de péremption.
- Les électrodes de référence Stelth 7 Rocket conservent une stabilité de 5 mV pour une impédance de 20 mégohms et sur une durée de 30 ans.
- Les électrodes de référence Stelth 7 Rocket fonctionnent dans tout type de sol et d'eau, des sols secs des déserts aux zones inondables, marécageuses, les environnements marins et eau douce.
- Permettent d'effectuer des mesures « off » sur des redresseurs à sorties de forte intensité au-delà du pouvoir de coupure des interrupteurs actuellement disponibles sur le marché.
- À présent, l'électrode Stelth 7 et l'interrupteur Bullet® Box IR Free vous permettent de mesurer le courant nécessaire pour protéger le défaut de revêtement.
- Réutilisables et démontables.
- Poids d'expédition de 1,4 kg.

Dimensions: de diamètre 60mm (2,25") et de longueur 220mm (8,5").

Matériaux : ABS antichoc, céramique avec membrane retenant l'humidité.

Stabilité: 5 mV pour un courant de charge de 3,0 µA.

Gamme de température : -23° à 80° C

Livré avec : interrupteur Bullet Box® IR Free (sur demande)

Électrode Stelth 7 Rocket IR FREE Probe modèle SRE-031-CSY

Cuivre/sulfate de cuivre (Cu/CuSO₄) Electrode avec coupon de 50 ou 100 cm²

ELECTRODE DE REFERENCE Cu/CuSO4 permanente

L'électrode de référence cuivre/sulfate de cuivre permanente (PICRE) se compose d'un boîtier en terre cuite poreuse contenant un élément en cuivre spiralé dans un gel de sulfate de cuivre.

L'élément en cuivre spiralé de l'électrode, ayant une aire efficace de 315 cm², est centré dans des cristaux de sulfate de cuivre dans un gel de sulfate de cuivre complètement saturé de 760 cm³, contenu dans le boîtier en terre cuite poreuse. Le boîtier a une aire de contact efficace avec le sol de 1490 cm².

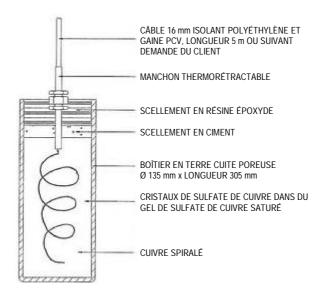
Les techniques générales de fabrication, les contrôles et les essais continus en production ainsi que la conception de l'ensemble garantissent des normes de fabrication uniformes et donnent une électrode de référence fiable et durable pour la commande et/ou la surveillance des systèmes de protection cathodique.

L'élément en cuivre et le gel de sulfate de cuivre sont scellés hermétiquement dans le boîtier au moyen d'un bouchon primaire en ciment et d'un capuchon secondaire en résine époxyde.

L'ensemble électrode se complète d'un câble en cuivre unipolaire multibrins 16 mm² (7 x 1,70 mm) intégré avec isolation en polyéthylène réticulé (XLPE) et gaine en polychlorure de vinyle (PVC, couleur rouge/rouge) de 5,0 mètres de longueur.

L'extrémité du câble est scellée dans le chapeau en résine époxyde au moyen d'un manchon thermorétractable passant dans un presse-étoupe non métallique.

Caractéristiques techniques :


Boîtier : Terre cuite poreuse Ø 135 mm x hauteur 305 mm Élément : Cuivre spiralé Ø 5 mm x longueur 2000 mm Medium : Cristaux de CuSO₄ dans Ø 110 mm x hauteur 220 mm

du gel de CuSO₄ saturé

Câble: Unipolaire 16 mm², XLPE/PVC x longueur 5 m

Poids: 8,5 kg (sans backfill mouillant)

Emballage: Électrode livrée complète en boîte individuelle en polystyrène expansé moulé

PUITS DE MESURE

CARACTÉRISTIQUES TECHNIQUES:

- Corps : PVC (chlorure de polyvinyle) diamètre 50mm x 3,7mm
- Bague acier : tube mécanique laminé à chaud, collé à l'araldite sur le PVC.
- 3 Colliers colson par puits de longueur 0,50 mètre
- 5 Colliers colson par puits de longueur 1,45 mètre
- Brasure argent 40% : câble électrique noyé dans l'acier puis brasé. (pas de brasure étain)
- Résine époxy (pas de résine polyester).
- Bouchon de protection
- Câble électrique H07 RNF 1 x 2,5mm² souple longueur sur demande
- Protection anticorrosion sur coupon à retirer avant utilisation.

Surface témoin	Hauteur	Longueur câble
5 cm ²	0,50 m	3,50 m
10 cm ²	0,50 m	3,50 m
25 cm ²	0,50 m	3,50 m
50 cm ²	0,50 m	3,50 m
100 cm ²	0,50 m	3,50 m
5 cm ²	1,45 m	4,50 m
10 cm ²	1,45 m	4,50 m
25 cm ²	1,45 m	4,50 m
50 cm ²	1,45 m	4,50 m
100 cm ²	1,45 m	4,50 m

Pour vos demandes, merci de nous spécifier :

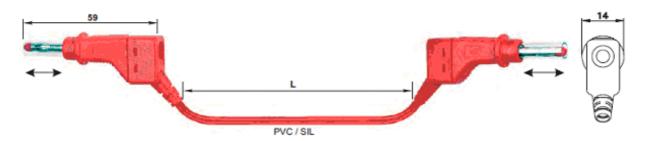
1/ la surface de témoin

2/ la hauteur

3/ La longueur du câble

Société Internationale of Produits and services Industriels 102 rue J.-B. Charcot – CS 60043

92411 Courbevoie Cedex- France


(33) 01 47 68 75 00

ipsi@ipsifrance.com

(33) 01 47 89 99 39 • : www.ipsifrance.com

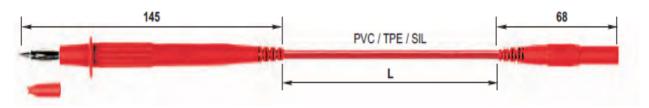
ACCESSOIRES DE MESURE

Cordons de mesure Ø 4 mm à reprise arrière

Cordon de mesure extra-souple à isolation en PVC, destinés à être utilisé exclusivement avec des appareils de mesure, non équipés de douilles de sécurité! Equipé des deux cotés d'une fiche à lamelles Ø 4mm à garde de protection et à reprise arrière protégée contre tout contact fortuit par un fourreau isolant rétractable.

Туре	Tension/ intensité assigné	Section du câble	Longueur cm	Couleurs
CM50			50	- Rouge
CM100	600 V, CAT II /	2.5 mm	100	- Noir
CM150	32 A	2,5 mm	150	- Bleu
CM200			200	

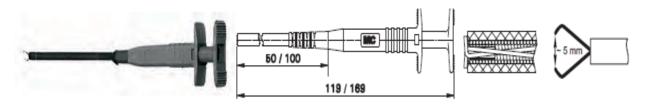
Cordons de mesure Ø 4 mm à fiches coudées



Cordons de test extra souples à isolation en PVC. Equipés d'un coté d'une fiche à lamelles Ø 4 mm droite protégée par un fourreau isolant rigide, de l'autre coté d'une fiche à lamelles Ø 4 mm coudée protégée par un fourreau isolant rigide.

Туре	Tension/ intensité assigné	Section du câble	Longueur cm	Couleurs
CMC50			50	- Rouge
CMC100	1000 V, CAT III /	1.0 mm	100	- Noir
CMC150	19 A	1,0 mm	150	- Bleu
CMC200			200	

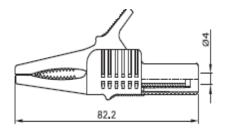
: ipsi@ipsifrance.com

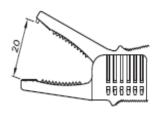

Cordons de test Ø 4 mm à pointes de touche

Cordon de test, extra souples à isolation en PVC. Equipés d'un côté d'une pointe de touche Ø 4 mm avec un contact à lamelles (élastique), de l'autre côté d'une fiche à lamelles Ø 4 mm droite protégée par un fourreau isolant rigide. Livré avec un capuchon de protection.

Туре	Tension/ intensité assigné	Section du câble	Longueur cm	Couleurs
CT100			100	- Rouge
CT150	1000 V, CAT III /	1.0 mm	150	- Noir
CT200	20 A	1,0 mm	200	- Bleu
CT300			300	

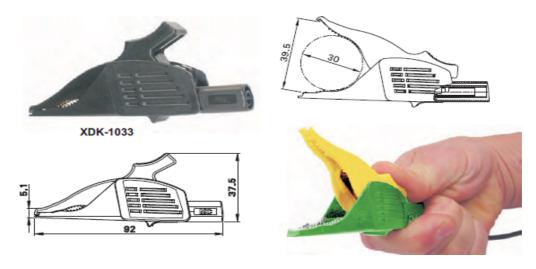
Pinces Ø 4 mm Fils élastiques autoserrants


Grippe-fils à fils élastiques auto-serrants en acier spécial, permettant de saisir des broches et des fils difficilement accessibles (en retrait). Particulièrement adapté à des mesures de tension. Les fils sont guidés dans un fourreau en silicone, qui offre une excellente résistance à la chaleur et une bonne souplesse, même à de faibles températures. Equipé dans la partie poussoir d'une douille rigide Ø 4 mm. Différentes longueurs de fourreau disponibles.


Туре	Tension/ intensité assigné	Longueur fourreau	Couleurs
MINIGRIP100	30 V _{AC} – 60V _{DC} / 1A	100 mm / 169 mm	- Rouge - Noir - Bleu

: ipsi@ipsifrance.com

Pinces Ø 4 mm, Pinces crocodiles



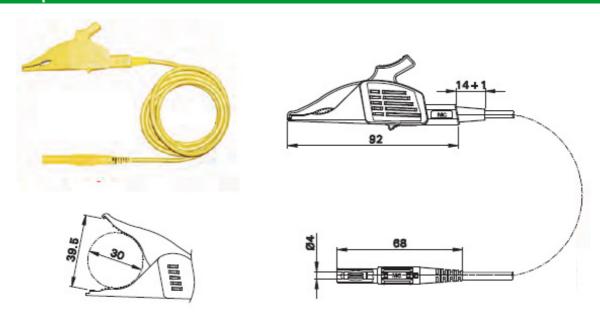
Pinces crocodiles en laiton parfaitement isolée. Mâchoires acérées pour pièces massives et surface de contact pour conducteurs fins. Douille rigide Ø 4 mm dans le corps isolant, adaptée à la connexion de fiches Ø 4 mm élastiques à fourreau rigide.

Туре	Tension/ intensité assigné	Couleurs
PC	1000 V, CAT II / max. 32A	- Rouge - Noir - Bleu

Pinces Ø 4 mm, Pinces Dauphin

Pince Dauphin en laiton parfaitement isolée. Mâchoires acérés pour pièces massives et surface de contact pour conducteurs fins. Douille rigide Ø 4 mm dans le corps isolant, adaptée à la connexion de fiches Ø 4 mm élastiques à fourreau rigide.

Туре	Tension/ intensité assigné	Couleurs
PDA	1000 V, CAT III / max. 32A	- Rouge - Noir - Bleu



Pinces Dauphin avec câble

Cordon à pince extra-souple. Equipé d'un côté d'une pince Dauphin entièrement isolée et à mâchoires acérées et surface de contact pour conducteur fin, de l'autre côté d'une fiche à lamelles Ø 4 mm protégée par un fourreau isolant rigide.

Туре	Tension/ intensité assigné	Section du câble	Longueur cm	Couleurs
PDC	1000 V, CAT II / 32 A	2,5 mm	150	- Rouge - Noir - Bleu

CABLE U1000 R2V

CABLES RIGIDES NON ARMES NF C 32-321

Température maxi au conducteur : 90°C

1- Ame

Cuivre nu massif ≤ 4mm² classe 1 Cuivre nu câblé ≥ 6mm² classe 2

2- Isolation

PR - polyéthylène réticulé

3- Bourrage

4- Gaine extérieure

PVC

Couleur: noir

2

3

• Repérage des conducteurs

Par couleurs: HD 308 S2

Par numéros à partir de 6 conducteurs avec conducteur vert/jaune

• Marquage de la gaine

NF USE - n G s - N° Usine - U 1000 R2V

• Rayon de courbure 6 x Diamètre extérieur

Ce câble convient pour l'alimentation de

puissance ou de liaison de postes fixes.

Il peut être enterré avec une protection mécanique complémentaire.

U1000 R2V		admissible		extérieur	Rayon de	Poids de	Masse
		A)		im)	Courbure	Cuivre	Approx.
	Enterré	Air libre	mini.	maxi.	(mm)	(kg/km)	(kg/km)
1 x 1.5	34	24	-	6,4	38	14	48
1 x 2.5	46	33	-	6,8	41	23	60
1 x 4	59	45	-	7,2	43	37	78
1 x 6	74	58	-	8,2	49	55	102
1 x 10	101	80	-	9,2	55	92	146
1 x 16	128	107	-	10,5	63	147	207
1 x 25	148	142	-	12,5	75	230	305
1 x 35	179	175	-	13,5	80	322	400
1 x 50	214	212	-	15,0	90	460	525
1 x 70	264	270	-	17,0	100	644	735
2 x 1.5	34	24	8,8	10,5	63	28	129
2 x 2.5	46	33	9,6	11,5	66	46	162
2 x 4	59	45	10,5	13,0	72	74	209
2 x 6	74	58	11,5	14,0	84	110	282
2 x 10	101	80	13,0	16,0	87	184	397
2 x 16	128	107	15,0	18,5	111	294	553
2 x 25	162	142	18,4	22,0	120	460	840
			·				
3G 1.5	34	24	9,2	11,0	66	41	145
3G 2.5	46	33	10,0	12,0	72	69	186
3G 4	59	45	11,0	13,0	78	110	246
3G 6	74	58	12,0	15,0	66	166	336
3G 10	101	80	14,0	17,0	72	276	484
3G 16	128	107	16,0	19,5	78	442	689
3G 25	141	127	19,0	23,5	135	690	1095
3G 35	133	125	21,0	26,0	150	-	615
			,	, i			
4G 1.5	29	22	9,8	11,5	69	55	169
4G 2.5	40	30	10,5	12,5	75	92	220
4G 4	51	40	12,0	14,0	84	147	294
4G 6	64	52	13,0	16,0	96	221	410
4G 10	88	71	15,5	18,5	111	368	600
4G 16	111	96	17,5	21,0	126	589	862

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043
92411 Courbevoie Cedex- France
3 : (33) 01 47 68 75 00
3 : (33) 01 47

CABLE H07RN-F

CABLES RONDS NEOPRENE

450/750 V

Température maxi au conducteur : 60°C

1- Ame

Cuivre nu souple classe 5 IEC 228

2- Isolation

Elastomère spécial réticulé

3- Gaine extérieure

PCP ou élastomère équivalent Couleur: noir

• Repérage des conducteurs

2 à 5 conducteurs : HD 308 S2

Par numéros à partir de 6 conducteurs avec conducteur vert/jaune

• Marquage de la gaine

USE <HAR> HO7RN-F n G s

• Rayon de courbure

- Statique : 3 x diamètre extérieur
- Dynamique : 6 x diamètre extérieur
- Dynamique T° -25°C : 12 x diamètre

extérieur

Good

Ce câble est particulièrement prévu pour l'alimentation de puissance ou de commande d'engins mobiles. L'emploi jusqu'à 0.6/1 kV est admis dans le cas d'installations fixes protégées et pour l'alimentation de moteurs.

H07RN-F	Intensité admissible(1)		e extérieur nm)	Poids de Cuivre	Masse Approx.
	(A)	mini.	maxi.	(kg/km)	(kg/km)
1 x 1.5	24	5.8	7.2	14.4	59
1 x 2.5	33	6.4	8.0	24	72
1 x 4	45	7.4	9.0	38	99
1 x 6	58	8.0	11.0	58	130
1 x 10	80	9.8	12.5	96	200
1 x 16	107	11.0	14.5	154	278
1 x 25	142	12.5	16.5	240	396
1 x 35	175	14.0	18.5	336	520
1 x 50	212	16.5	21.0	480	719
1 x 70	270	18.5	23.5	672	947
2 x 1	19	8.0	10.5	19	89
2 x 1.5	24	9.0	11.5	29	128
2 x 2.5	33	10.5	13.5	48	177
2 x 4	45	12.0	15.0	77	249
2 x 6	58	13.5	18.5	115	327
2 x 10	80	18.5	24.0	192	586
2 x 16 (1): Température ambiante : 30	107	21.0	27.5	307	810

(1): Température ambiante : 30°C

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043
92411 Courbevoie Cedex- France
3 : (33) 01 47 68 75 00
3 : (33) 01 47

: ipsi@ipsifrance.com

CABLE H07RN-F TENAFLEX® SR

CABLES RONDS NEOPRENE

450/750 V

Température maxi au conducteur : 85°C

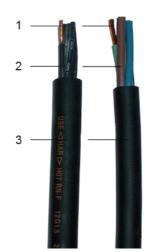
1- Ame

Cuivre nu souple classe 5 IEC 228

2- Isolation

Elastomère spécial réticulé

3- Gaine extérieure


PCP ou élastomère équivalent

Couleur: noir

Documents de normalisation

CENELEC HD 22.4 UTE NF C 32-102.4 / NF C 32-120 DIN VDE 0282-1 / VDE 0283-4

BS 6007 / BS 6500

• Repérage des conducteurs

2 à 5 conducteurs : HD 308 S2

Par numéros à partir de 6 conducteurs avec

conducteur vert/jaune

• Marquage de la gaine

USE <HAR> HO7RN-F 221 TENAFLEX n G s S.Y.+
NF-USE <HAR> HO7RN-F 221 TENAFLEX SR n x s S.Y.+

• Rayon de courbure

- Statique : 3 x diamètre extérieur

- Dynamique : 6 x diamètre extérieur

Flexible

IEC 60332-1 EN 50265-2-1

FLAME RETARDANT

Ce câble est particulièrement prévu pour l'alimentation de puissance ou de commande d'engins mobiles. Il présente en outre des propriétés mécaniques très supérieures à celles imposées par la norme. L'emploi jusqu'à 0,6/1 kV est admis dans le cas d'installations fixes protégées et pour l'alimentation de moteurs.

H07RN-F TENAFLEX-SR	Intensité admissible (1) (A)	Diamètre extérieur (mm)	Chute de tension (1) (V/A.km)	Poids de Cuivre (kg/km)	Masse Approx. (kg/km)
1 x 1.5	19.5	6.5	21.5	14.4	50
1 x 2.5	27	7.0	13.0	24	65
1 x 4	36	8.0	8.10	38	90
1 x 6	48	8.5	5.45	58	115
1 x 10	63	10.0	3.20	96	175
1 x 16	85	12.0	2.05	154	255
1 x 25	112	14.0	1.40	240	370
1 x 35	138	16.0	1.00	336	490
1 x 50	168	18.0	0.72	480	670
1 x 70	213	20.5	0.54	672	900
2 x 1	17	9.0	36.5	19	90
2 x 1.5	22	10.0	25.0	29	120
2 x 2.5	30	11.5	15.0	48	165
2 x 4	40	13.0	9.30	77	230
2 x 6	51	14.5	6.20	115	300
2 x 10	70	19.5	3.65	192	530
2 x 16	94	23.0	2.35	307	770
2 X 25	119	27.0	1.55	480	1100

(1): Température ambiante : 30°C

CABLE H07RN-F TITANEX®

CABLES RONDS NEOPRENE HD 22.4 / NF C 32-102-4 450/750 V

Température maxi au conducteur : 60°C

1- Ame

Cuivre nu souple classe 5 **IEC 228**

2- Isolation

Elastomère spécial réticulé

3- Gaine extérieure

PCP ou élastomère équivalent

Couleur: noir

• Repérage des conducteurs

2 à 5 conducteurs : HD 308 S2

Par numéros à partir de 6 conducteurs avec conducteur vert/jaune

• Marquage de la gaine

USE <HAR> HO7RN-F Titanex n G s

• Rayon de courbure

- Statique : 3 x diamètre extérieur

- Dynamique : 6 x diamètre extérieur

- Dynamique T° -25°C : 12 x diamètre extérieur

Flexible

Oil Resistant

EN 50265-2-1 NF C 32-070 Cat.C2

Ce câble est particulièrement prévu pour l'alimentation de puissance ou de commande d'engins mobiles. L'emploi jusqu'à 0,6/1 kV est admis dans le cas d'installations fixes protégées et pour l'alimentation de moteurs.

H07RN-F	Intensité Diamètre extérieur (mm)		Poids de Cuivre	Masse Approx.	
11071(11-1	(A)	Mini.	Maxi.	(kg/km)	(kg/km)
1 x 1.5	24	5.8	7.2	14.4	59
1 x 2.5	33	6.4	8.0	24	72
1 x 4	45	7.4	9.0	38	99
1 x 6	58	8.0	11.0	58	130
1 x 10	80	9.8	12.5	96	200
1 x 16	107	11.0	14.5	154	278
1 x 25	142	12.5	16.5	240	396
1 x 35	175	14.0	18.5	336	520
1 x 50	212	16.5	21.0	480	719
1 x 70	270	18.5	23.5	672	947
2 x 1	19	8.0	10.5	19	89
2 x 1.5	24	9.0	11.5	29	128
2 x 2.5	33	10.5	13.5	48	177
2 x 4	45	12.0	15.0	77	249
2 x 6	58	13.5	18.5	115	327
2 x 10	80	18.5	24.0	192	586
2 x 16 (1): Température ambiante :	107	21.0	27.5	307	810

(1): Température ambiante : 30°C

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043
92411 Courbevoie Cedex- France
3 : (33) 01 47 68 75 00
3 : (33) 01 47

CABLE XLPE/PVC/SWA/PVC

CABLES ARMES DE PUISSANCE BS 5467 0.6/1 kV

Température maxi au conducteur : 90°C

1- Ame

Cuivre nu recuit câblé IEC 228 classe 2

2- Isolant

PR - polyéthylène réticulé

3- Bourrage en PVC extrudé

4- Protection mécanique

Armure par fils d'acier galvanisé (fils d'Aluminium pour monoconducteur)

5- Gaine extérieure

PVC - noir

• Repérage des conducteurs (BS 6346)

nouveau repérage couleur / HD 308 S2

5 cond. (Jusqu'à 6mm²) : blanc numérotés en noir

• Tension d'essai

3 kV

• Rayon de courbure

8 x diamètre extérieur

Ne doit pas être installé par une température inférieur à 0°C.

Good

Rigide

Very good

BS 5467	Construction de l'âme (n/mm)	Intensité admissible ₍₁₎ (A)	Diamètre extérieur approx. (mm)	Poids de cuivre (kg/km)	Masse (kg/km)
1 x 50 ²	19 / 1.78	230	18.0	480	700
1 x 70 ²	19 / 2.14	280	21.0	672	1000
1 x 95 ²	19 / 2.52	335	23.0	912	1250
1 x 120 ²	37 / 2.03	380	24.0	1152	1550
2 x 1.5 ²	7 / 0.53	27	12.4	29	305
2 x 2.5 ²	7 / 0.67	36	13.2	48	352
2 x 4 ²	7 / 0.85	49	14.3	77	419
2 x 6 ²	7 / 1.04	62	15.4	115	498
2 x 10 ²	7 / 1.35	85	17.9	192	764
2 x 16 ²	7 / 1.70	110	21.0	307	900
2 x 25 ²	7 / 2.14	146	24.0	480	1000
2 x 35 ²	7 / 2.52	180	27.9	672	1490
2 x 50 ²	19 / 1.78	219	25.8	960	1750
2 x 70 ²	19 / 2.14	279	29.0	1344	2300

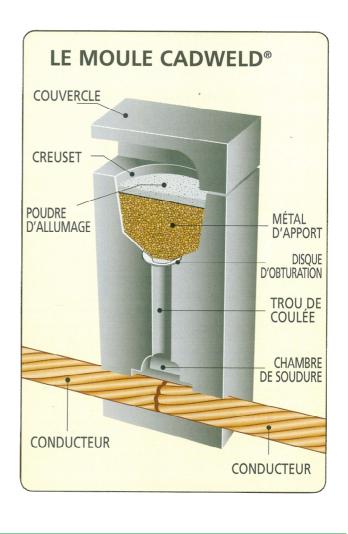
(1) : Température air libre / enterré : 30°C / 20°C

SOUDURE ALUMINOTHERMIQUE

CADWELD® - La liaison moléculaire

La liaison moléculaire qui élimine les connexions en réalisant une liaison électriquement parfaite et insensible à la corrosion.

Les connexions sont le point faible de tout circuit électrique et particulièrement les circuits de terre sujets au vieillissement et à la corrosion. La capacité d'un circuit de terre à assurer la sécurité des personnes dépend de la qualité des connexions réalisées.

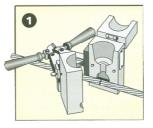

Le procédé CADWELD®

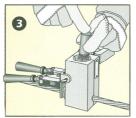
Permet de réaliser des liaisons électriques cuivre/cuivre, cuivre/acier, cuivre/alu, alu/alu sans apport extérieur d'énergie.

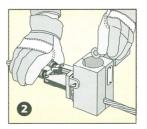
Le principe consiste à réunir dans un moule en graphite un métal d'apport et une poudre d'allumage. La composition du métal d'apport dépend de la nature des conducteurs à souder (oxyde de cuivre et aluminium pour une liaison Cu/Cu, Cu/acier ou acier/acier).

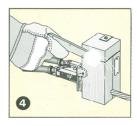
La réduction de l'oxyde de cuivre par l'aluminium produit, à très haute température, du cuivre fondu et un laitier d'oxyde d'aluminium.

La forme de la chambre de soudure du moule, ses dimensions et le dosage du métal d'apport dépendent des éléments à souder et de leurs dimensions.


LE PRINCIPE DE BASE


Le métal d'apport et la poudre d'allumage sont versés dans le creuset du moule. Ils sont retenus dans le creuset lors de la réaction exothermique au moyen d'un disque d'obturation.


Quand la réaction est complète, le métal en fusion est libéré et précipité dans la chambre de soudure à travers le trou de coulée.


4 ETAPES SIMPLES

- Nettoyer les extrémités des conducteurs. Placer dans le moule.
- A l'aide de la pince, fermer les parties du moule et verrouiller. Laisser glisser le disque métallique dans le creuset en s'assurant qu'il obstrue correctement le trou de coulée.
- Verser le métal d'apport à l'intérieur du creuset. Refermer la dose et décompacter la poudre d'allumage en tapant sur le fond de la dose.
 - Répartir cette poudre sur le métal d'apport.
- Fermer le couvercle et allumer avec le pistolet d'allumage. Ouvrir le moule après environ 10s, lorsque le métal s'est solidifié

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043

102 rue J.-B. Charcot – CS 60043 92411 Courbevoie Cedex- France : (33) 01 47 68 75 00

: (33) 01 47 68 75 00 : ipsi@ipsifrance.com (33) 01 47 89 99 39 • : www.ipsifrance.com

LA SOUDURE CADWELD®

- Capacité de passage du courant supérieure à celle du conducteur
- Ne se détériorera pas dans le temps
- Est une liaison moléculaire qui élimine tout risque de desserrage ou de corrosion.
- Résistera aux courants de défauts répétés
- Contrôle visuel simple de la qualité.

INALTERABLE

Etant donné que la liaison moléculaire élimine le concept de contact de surface, un électrolyte ne peut pas pénétrer entre les conducteurs et provoquer une oxydation et une détérioration dans le temps.

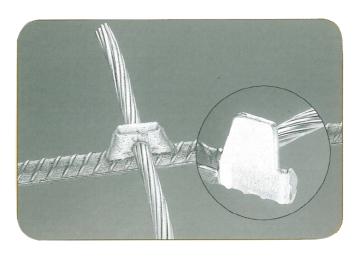
ENVIRONNEMENTS CORROSIFS

Cette fiabilité est particulièrement intéressante pour les environnements humides ou chimiques ou pour les liaisons directement enterrées.

CAPACITE À SUPPORTER UN COURANT ÉLEVÉ

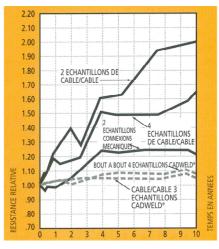
La température de fonte de la liaison CADWELD® est plus élevée que la température de fonte du cuivre (1 082°C). Pour cette raison, en cas d'élévation anormale de la température due à un courant de défaut élevé, le conducteur est détruit avant la connexion.

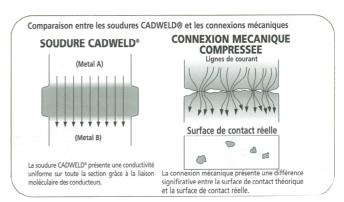
CONDUCTIVITÉ


Les connexions CADWELD® forment une liaison massive autour des conducteurs assurant la continuité. La section transversale de la soudure a une capacité de transport du courant plus importante que les conducteurs.

PERFORMANCE

Les soudures CADWELD® standard ont une section plus importante que celle des conducteurs à relier, ce qui compense la différence de résistivité entre le conducteur et le matériau de soudage. En conséquence, dans des conditions de défaut, la soudure s'échauffera moins que le conducteur. Si des applications spéciales ne permettent pas d'employer l'augmentation exigée de section, l'utilisation de la formule :


R= (p x I)/S et V=Rx I


Permettra de définir précisément la résistance de la soudure CADWELD®.

TEST DE CORROSION

Ce test de vieillissement accéléré, conduit sous atmosphère saline et température contrôlées, montre que les soudures CADWELD® conservent toutes leurs propriétés électriques pendant cette période alors que la résistance des connexions mécaniques augmente avec le temps en altérant leurs propriétés conductrices.

Comparaison entre les soudures CADWELD® et les connexions mécaniques SOUDURES CADWELD® (métal A et métal B)

La soudure CADWELD® présente une conductivité uniforme sur toute la section grâce à la liaison moléculaire des conducteurs.

GUIDE DE SELECTION

SOUDURE SUR CANALISATION ACIER

	Câble 10² rigide ou souple		Câble 16² rigide		Câble 25² rigide		Câble 35² rigide		Câble 50² rigide	
MOULE	HAA Y1 CA	221466	HAA B3 CA	240228	HAA Y1 CA	221466	HAA Y2 CA	231704	HAA Y3 CA	221651
METAL	CA 32	163220	CA15	163200	CA 32	163220	CA 32	163220	CA 45	163230
PINCE	M 129	161030	M 129	161030	M 129	161030	M129	161030	M 129	161030
MANCHON	H 102	180170	X	Х	Х	Х	X	Х	X	Х
GRATTOIR	B 136A	182125	B 136A	182125	B 136A	182125	B 136A	182125	B 136A	182125
ALLUMEUR	T 320	165000	T 320	165000	T 320	165000	T 320	165000	T 320	165000
PINCEAU	KIT 120 3/4	165260	KIT 120 3/4	165260	KIT 120 3/4	165260	KIT 120 3/4	165260	KIT 120 3/4	165260
BROSSE	T 313	165040	T 313	165040	T 313	165040	T 313	165040	T 313	165040

	Câble 16 ² souple				
MOULE	HAA Y2 CA	231704			
METAL	CA 32	163220			
PINCE	M 129	161030			
MANCHON	H 103	180180			
GRATTOIR	B136 A	182125			
ALLUMEUR	T 320	165000			
PINCEAU	KIT 120 3/4	165260			
BROSSE	T 313	165040			

Pour canalisations de diamètre inférieur à 1000 mm nous consulter Les moules ci-dessous sont à fond plat et utilisables pour canalisations de diamètre 1000mm ou de Ø supérieur.

MOULE								
		référence	N° article	conditionnement	Poids en kg			
		HAA Y1 CA	221466	1	0,31			
		HAA B3 CA	240228	1	0,19			
		HAA Y2 CA	231704	1	0,31			
		HAA Y3 CA	223651	1	0,31			

METAL								
	référence	N° article	Conditionnement	Poids unitaire en kg				
	CA15	163200	20	0,015				
	CA25	163210	20	0,025				
	CA32	163220	20	0,032				
	CA45	163230	20	0,045				

PINCE							
	référence N° article		Conditionnement	Poids unitaire en kg			
	M 129	161030	1	0,315			

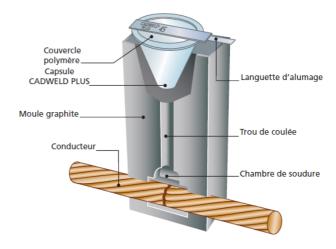
ALLUMEUR								
	référence	N° article	Conditionnement	Poids unitaire en kg				
	T320	165000	1	0,090				

BROSSE								
	référence	N° article	Conditionnement	Poids unitaire en kg				
	T 313	165040	1	0,070				

SOUDURE CADWELD® PLUS

Les connexions CADWELD® PLUS offrent bien sûr les mêmes avantages que les connexions **CADWELD®** traditionnelles:

- Supportent des courants de défauts répétés sans aucun dommage.
- Caractéristiques nettement supérieurs à celles requises par la norme IEEE 837® concernant la qualité des connexions sur les circuits de terre des sous-stations.
- · Liaisons cuivre-cuivre, cuivre-acier, cuivreacier galvanisé, cuivre-acier cuivré, cuivrebronze/laiton/, acier-acier, etc.
- Acceptent un courant de défaut égal à celui supporté par le conducteur
- Liaison moléculaire permanente insensible à la corrosion d'une durée de vie au moins égale à celle de l'installation.
- Ne nécessite aucun apport d'énergie.
- Contrôle de qualité par simple inspection visuelle.
- Apprentissage très rapide de la mise en œuvre.



La toute nouvelle connexion soudée permanente, insensible à la corrosion, de très faible résistance, simplement meilleure.

Réaliser une connexion électrique CADWELD® devient extrêmement facile grâce au système révolutionnaire CADWELD® PLUS. En effet, l'utilisation très simple de ces nouvelles doses de métal d'apport ne nécessite plus de poudre d'allumage et permet une réduction du temps de mise en œuvre.

Le métal d'apport et le système d'allumage sont contenus dans une capsule métallique étanche. Ces nouvelles doses de métal d'apport sont conçues pour être utilisées avec tous les moules standard CADWELD® y compris CADWELD® MULTI. Une fois mis en place dans le creuset du moule, l'allumage à distance de la dose de métal d'apport est obtenu à l'aide d'un boîtier de commande électronique connecté à la dose par un câble d'une longueur de 1,80 m ou 4,60 m.

CADWELD® PLUS

Présentation

- Métal d'apport dans une capsule thermique
- Repérage des doses par un code de couleurs
- Allumage à distance par boîtier électronique
- Cordon de raccordement de 1.80 m ou 4.60 m

Avantages

- Apprentissage et mise en œuvre
- Réalisation plus rapide de la connexion
- · Nettoyage du moule plus facile
- Réduit les risques d'erreurs
- Simple contrôle visuel de la dose correcte de métal d'apport
- Plus de poudre spéciale d'allumage
- Allumage très facile
- Allumage en toute sécurité même dans les positions les plus difficiles

• 4 étapes simples pour l'obtention de connexions électriques parfaites

LE SYSTEME CADWELD® PLUS:

- Consiste en une capsule métallique hermétique jetable contenant à la fois le métal d'apport, le système d'allumage et le disque d'obturation du trou de coulée.
- Durée de stockage pratiquement illimitée
- Permet l'allumage des soudures à distance (1,8 mètres) (jusqu'à 4,6 mètres avec un cordon optionnel)
- Nécessite moins de composant : pas de poudre d'allumage, pas de disque métallique, pas de pistolet allumeur
- Facile à manipuler, stocker et transporter sur terre, par mer ou par air sans limite de quantités.
- Réduit les temps de mise en œuvre de 20%
- Présente un code des couleurs permettant le repérage aisé des doses de métal d'apport par taille et par type
- Allumage électronique à l'aide d'un boîtier électronique (CE/UL) alimenté par 8 piles standard AA et permettant la réalisation d'environ 600 connexions.
- Prévu pour être utilisé avec les moules CADWELD® standard y compris CADWELD® MULTI

Positionner la capsule CADWELD PLUS dans le moule

Maintenir appuyé le bouton du boîtier jusqu'à l'allumage de la dose

Le boîtier de commande permet l'amorçage de la réaction exothermique du métal d'apport à l'intérieur du creuset. Un cordon de 1,80 m ou 4,60 m, résistant aux hautes températures permet sa liaison à la languette d'allumage de la capsule à l'aide d'un connecteur spécifique.

Brancher le connecteur sur la languette d'allumage

Ouvrir le moule et en ôter la capsule

Une fois branché, il suffit de maintenir appuyé le bouton du boîtier initiant un cycle charge/décharge. En quelques secondes, une impulsion de tension contrôlée est appliquée à la languette d'allumage amorçant la réaction exothermique.

CADWELD® PLUS pour protection cathodique

Désignation CADWELD® PLUS	N° d'article Europe	Anneau de couleur identifiant la dose	Désignation doses traditionnelles (Couvercle vert)	
CA15PLUSF33	165713	Noir	CA15/CA15S	
CA25PLUSF33	165714	Rouge	CA25	
CA32PLUSF33	165715	Blanc	CA32	
CA45PLUSF33	165716	Bleu Clair	CA45	
CA65PLUSF33	165717	Vert foncé	CA65	

Désignation CADWELD® PLUS	N° d'article Europe	Anneau de couleur identifiant la dose	Désignation doses traditionnelles (Couvercle vert)		
CA25PLUSXF19	165722	Rouge	CA25XF19		
CA32PLUSXF19	165723	Blanc	CA32XF19		
CA45PLUSXF19	165724	Bleu Clair	CA45XF19		
CA65PLUSXF19	165725	Vert foncé	CA65XF19		

Accessoires

Désignation CADWELD® PLUS	N° d'article Europe	Désignation
PLUSCU	165738	CADWELD® PLUS Boîtier de commande avec câble de 1,80 m
PLUSCU15L	165745	CADWELD® PLUS Boîtier de commande avec câble de 4,60 m
PLUSCULD	165739	Câble de rechange 1,80 m
PLUSCULD15	165746	Câble de rechange 4,60 m

PLUSCU PLUSCULD

GUIDE DE SELECTION

SOUDURE SUR CANALISATION ACIER

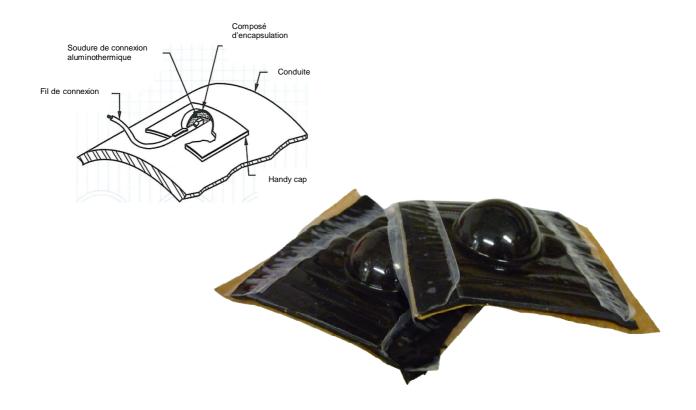
	Câble 10² rigide ou souple		Câble 16² rigide		Câble 25² rigide		Câble 35² rigide		Câble 50² rigide	
MOULE	HAA Y1 CA	221466	HAA B3 CA	240228	HAA Y1 CA	221466	HAA Y2 CA	231704	НАА ҮЗ СА	223651
METAL	CA 32 Plus	165715	CA15 Plus	165713	CA 32 Plus	165715	CA 32 Plus	165715	CA 45 Plus	165716
PINCE	M 129	161030	M 129	161030	M 129	161030	M129	161030	M 129	161030
MANCHON	H 102	180170	х	Х	х	Х	х	Х	х	Х
GRATTOIR	B 136A	182125	B 136A	182125	B 136A	182125	B 136A	182125	B 136A	182125
ALLUMEUR	PLUSCU	165738	PLUSCU	165738	PLUSCU	165738	PLUSCU	165738	PLUSCU	165738
PINCEAU	KIT 120 3/4	165260	KIT 120 3/4	165260	KIT 120 3/4	165260	KIT 120 3/4	165260	KIT 120 3/4	165260
BROSSE	T 313	165040	T 313	165040	T 313	165040	T 313	165040	T 313	165040

	Câble 16 ² souple					
MOULE	HAA Y2 CA	231704				
METAL	CA 32 Plus	165715				
PINCE	M 129	161030				
MANCHON	H 103	180180				
GRATTOIR	B136 A	182125				
ALLUMEUR	PLUSCU	165738				
PINCEAU	KIT 120 3/4	165260				
BROSSE	T 313	165040				

Pour canalisations de diamètre inférieur à 1000 mm nous consulter Les moules ci-dessous sont à fond plat et utilisables pour canalisations de diamètre 1000mm ou de Ø supérieur.

HANDY CAPS

Le Handy Cap™ est un ensemble préfabriqué de 102 x 102 mm, conçu pour la protection cathodique des connexions avec des tuyaux et des réservoirs. Comprimé en position à la main par-dessus la soudure du fil d'anode, il forme un joint électriquement isolant épais hautement résistant par-dessus la soudure, l'extrémité du fil de connexion et la zone avoisinante du tuyau ou du réservoir.

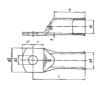

Le Handy Cap est facile à mettre en œuvre et économique. Il peut être utilisé sur toutes les zones de soudure de connexions d'anodes et de fils de test. Il est particulièrement utile pour des soudures sur des tuyaux revêtus en usine, où seule une petite partie du revêtement a été enlevée pour permettre la mise en place des soudures de masse aluminothermiques. Il est idéal pour les applications à accessibilité limitée car il est facile à manipuler et simple à appliquer.

Description:

- ✓ Feuille de recouvrement en plastique comportant un dôme en forme d'igloo et un tunnel d'entrée pour le fil de connexion
- ✓ Le composé élastomère spécial contenu dans le dôme plastique est suffisamment solide pour résister à toutes les températures d'application et de service normales mais suffisamment souple pour épouser le profil soudé irrégulier et le recouvrir complètement
- De chaque côté du dôme est prévue une double rangée de dentelures parallèles assurant la flexibilité nécessaire pour se conformer aux tuyaux de petit diamètre.
- Base en Royston Tac-Tape, ruban élastomère noir sans renfort à propriétés adhésives exceptionnelles, assurant une liaison solide avec la surface du métal.

Propriétés typiques :

- Construction: dôme en plastique moulé rempli d'un composé résistant à la corrosion à base de ruban élastomère épais.
- ✓ Dimensions hors tout : 102 x 102 mm
- ✓ Feuille plastique : 70 x 102 mm (dentelée)
- ✓ Épaisseur de la feuille : 0,25 mm
- ✓ Dôme plastique : Ø 41,3 mm / hauteur 20,3 mm
- ✓ Épaisseur de l'adhésif : 4,2 mm
- ✓ Poids: 59,5 g
- ✓ Température d'application : –29°C à 49°C
- ✓ Température de service: –40°C à + 85°C
- ✓ Conservation : pratiquer une rotation annuelle

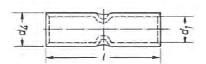


Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043

COSSES TUBULAIRES

Matière : tube en Cu él. Surface étamée par électrolyse

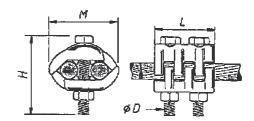
Standard: avec trou d'inspection et tulipage


Article n°	Section	Alésage	1	nsions n								Conditionnement
CNE 4 F O	mm²	Ø	d1	d4	d3	d2	a	r	c1	e O F	12	Doite do 100
CNF 1,5 - 2	1,5	M 2 M 3	1,7	3,3	6 6	2,3	6	4	3,25	0,5	12 12	Boite de 100
CNF 1,5 - 3		M 4			7,5	3,2		5	3,25 4		13	
CNF 1,5 - 4		M 5			8	4,3	ĺ	5,5	4,75		14	
CNF 1,5 - 5		M 6			9	5,3 6,5		6,5	6,5		16	
CNF 1,5 - 6 CNF 2,5 - 3	2.5	M 3	2,2	4	8	3,2	6	4	3,25	0,5	12	Boite de 100
CNF 2,5 - 4	2,5	M 4	2,2	4	8	4,3	O	5	4,5	0,5	13	Boile de 100
CNF 2,5 - 5		M 5			8	5,3		5,5	5		14	
CNF 2,5 - 6		M 6			10	6,5		6,5	6,5		16	
CNF 2,5 - 8		M 8			12	8,5		9,5	7,75		20	
CNF 4 - 4	4	M 4	2,7	5	9	4,3	8	5,5	4,75	1	17	Boite de 100
CNF 4 - 5	7	M 5	2,1		9	5,3		6	4,75	•	17	Doile de 100
CNF 4 - 6		M 6			12	6,5		6,5	6,5		19	
CNF 4 - 8		M 8			12	8,5		9,5	8,5		22	
CNF 6 - 4	6	M 4	3,3	5,5	13	4,3	11	7,5	6,5	1	24	Boite de 100
CNF 6 - 5	٥	M 5	0,0	0,0	13	5,3		7,5	6,5		24	Donc de 100
CNF 6 - 6		M 6			13	6,5		8	7,5		25	
CNF 6 - 8		M 8			13	8,5		10	10		28	
CNF 6 - 10		M 10			16	10,5		12	12		30	
CNF 10 - 4	10	M 4	4,2	6,8	12	4,3	12	7,5	6,5	1	24	Boite de 100
CNF 10 - 5	.0	M 5	,	,	12	5,3		7,5	6,5		24	
CNF 10 - 6		M 6			12	6,5		7,5	6,5		24	
CNF 10 - 8		M 8			15	8,5		10	10		27	
CNF 10 - 10		M 10			16	10,5		12	12		29	
CNF 10 - 12		M 12			19	13		13	13		31	
CNF 16 - 5	16	M 5	5,5	8	12	5,3	14	7,5	6,25	1	27	Boite de 100
CNF 16 - 6		M 6			12	6,5		7,5	6,25		27	
CNF 16 - 8		M 8			16	8,5		9,5	8,5		29	
CNF 16 - 10		M 10			16	10,5		11,5	10,5		31	
CNF 16 - 12		M 12			19	13		13	12		32	
CNF 25 - 5	25	M 5	6,6	9,5	13	5,3	15	7,5	6,25	1	30	Boite de 100
CNF 25 - 6		M 6			13	6,5		7,5	6,25		30	
CNF 25 - 8		M 8			16	8,5		10	10		32	
CNF 25 - 10		M 10			17	10,5		12	12		34	
CNF 25 - 12		M 12			19	13		13	13		35	
CNF 25 - 14		M 14			21	15		14,5	14,5		38	
CNF 35 - 5	35	M 5	7,9	11	15	5,3	17	7,5	7,5	1	32	Boite de 100
CNF 35 - 6	33	M 6	7,0		15	6,5		7,5	7,5		32	Doile de 100
CNF 35 - 8		M 8			17	8,5		10	10		34	
CNF 35 - 10		M 10			17	10,5		12	12		37	
CNF 35 - 10 CNF 35 - 12		M 12			19	13		13	13		38	
CNF 35 - 12 CNF 35 - 14		M 14			21				14,5			
CNF 35 - 14		IVI 14			۷1	15		14,5	14,3		39	

Article n°	Section	Alésage	Dimer	nsions n	nm							Conditionnement
	mm²	Ø	d1	d4	d3	d2	а	r	c1	е	1	
CNF 50 - 6	50	M 6	9,2	12,5	17	6,5	19	7,5	7,5	1	35	Boite de 100
CNF 50 - 8		M 8			18	8,5		10	10		37	
CNF 50 - 10		M 10			18	10,5		12	12		40	
CNF 50 - 12		M 12			19	13		13	13		41	
CNF 50 - 14		M 14			21	15		14,5	14,5		43	
CNF 50 - 16		M 16			26	17		16	16		45	
CNF 70 - 6	70	M 6	11	15	21	6,5	21	10	10	2	41	Boite de 100
CNF 70 - 8		M 8			21	8,5		10	10		41	
CNF 70 - 10		M 10			21	10,5		12	12		43	
CNF 70 - 12		M 12			21	13		13	13		46	
CNF 70 - 14		M 14			23	15		14,5	14,5		48	
CNF 70 - 16		M 16			28	17		16	16		50	
CNF 70 - 20		M 20			30	21		19	19		53	
CNF 95 - 6	95	M 6	13,1	17	23	6,5	25	10	10	2	46	Boite de 100
CNF 95 - 8		M 8			23	8,5		10	10		46	
CNF 95 - 10		M 10			23	10,5		12	12		48	
CNF 95 - 12		M 12			23	13		13	13		50	
CNF 95 - 14		M 14			23	15		14,5	14,5		52	
CNF 95 - 16		M 16			25	17		16	16		54	
CNF 95 - 20		M 20			30	21		19	19		57	

MANCHONS A BUTEES

Matière : tube en Cu él. Surface étamée par électrolyse



Article n°	Section	Dimensions mm			Conditionnement
	mm²	d1	d4	1	
MNF 1,5	1,5	1,7	3,3	20	Boite de 100
MNF 2,5	2,5	2,2	4	20	
MNF 4	4	2,7	5	25	
MNF 6	6	3,3	5,5	26	
MNF 10	10	4,2	6,8	28	
MNF 16	16	5,5	8	32	
MNF 25	25	6,6	9,5	36	
MNF 35	35	7,9	11	38	
MNF 50	50	9,2	12,5	46	
MNF 70	70	11	15	50	
MNF 95	95	13,1	17	57	
MNF 120	120	14,5	19	61	

RACCORDS A GRIFFES

Raccords à griffes, étamés (laiton matricé à chaud, visserie acier)

Article n° Etrier acier	Section mm² Mini-maxi	boulon Nb x Ø D	Dimension	s mm	Conditionnement	
RG 4 - 30	4 - 30	1 x 6	20	25	25	Boite de 25
RG 10 - 50	10 - 50	1 x 6	23	30	25	Boite de 25
RG 10 - 50 / 2	10 - 50	2 x 6	30	30	25	Boite de 25
RG 16 - 95	16 - 95	2 x 6	30	37	10	Boite de 10
RG 25 - 150	25 - 150	2 x 8	42	48	10	Boite de 10

BOITE DE DERIVATION AVEC RESINE A COULER Y

Utilisation universelle pour dériver les câbles à isolant synthétique basse tension ou conducteurs à isolant PVC, PE, VPE et EPR (par ex.: N(A)YY, NYM, TT) avec ou sans conducteurs concentriques. Utilisation appropriée pour câbles en cuivre et aluminium.

Niveau de tension

- U_o/U (U_m) 0.6/1 (1.2) kV

Applications

- Intérieur
- Ligne aérienne
- Ligne souterraine
- Eau
- Voies d'installation

Testes

- DIN VDE 0278 parties 1 et 3
- DIN VDE 0278 parties 393
- EN 50393 ainsi que CENELEC HD 623 (VDE 0278, partie 623)

Caractéristiques

- Grande ouverture pour un coulage facile
- Haute isolation électrique
- Étanchéité absolue dans le sens longitudinal et transversal
- Haute tenue mécanique
- Bonne résistance aux rayonnements UV, aux terres alcalines et aux agents chimiques
- Dimensions compactes
- Durée de stockage de résine standard jusqu'à 40 mois
- Coquilles de grande qualité
- Visibilité de la connexion avant coulée
- Montage simple et rapide, d'où un gain de temps et de coûts
- Immédiatement opérationnel

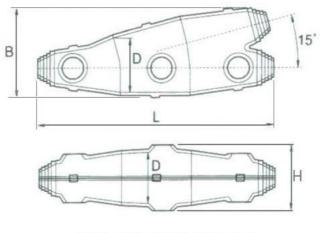
Indication

- Dès la boîte Y3 on peut utiliser le connecteur à anneau (par exemple: bornes de dérivation HE 1/70/150)
- Avec les accessoires adéquats, les boîtes de dérivation Y sont utilisables pour les câbles isolés au papier (seulement sur demande)

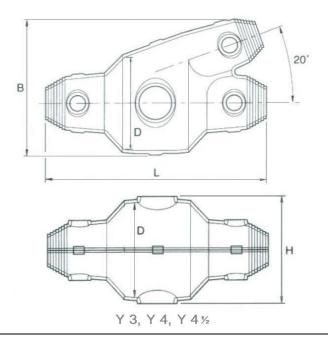
Livraison

- Coquilles transparentes et autoétanches en polycarbonate
- Résine en PUR résistante EG à l'hydrolyse, dans un bi-sac pratique contenant le volume nécessaire et prêt à l'emploi
- Entonnoir de remplissage
- Entonnoir d'évacuation d'air (sauf Y 00)
- Capuchons
- Ruban d'isolation
- Gants
- Notice de montage illustrée et facile à suivre

							Câ	ble á isolati	on synthétiqı	ıe	écran coi	ncentrique
Туре	L mm	D mm	H mm	B mm	Ø-câble max. mm		3x		4×	5x		₩ Sx
					Câble principal	Câble de dérivation	Câble principale	Câble principal	Câble de dérivation	Câble principal	Câble principal	Câble de dérivation
								Section	e par condu	ucteur mm²		
Y0	185	45	55	80	17	17	4	4	4	4	4/4	4/4
Y1	240	60	70	110	22	22	6	10	10	6	10/10	10/10
Y2	285	65	75	120	37	33	16	16	16	16	16/16	16/16
Y3	240	100	110	145	42	37	25	50	35	25	25/25	25/25
Y3.5	300	110	120	150	54	38		50	35	35	35/35	25/25
Y4	285	110	120	170	53	37		95	50	50	70/70	25/25
Y4.5	335	120	130	193	56	42		150	70		120/120	95/95
Y5	382	140	150	220	62	52		240	95		150/150	95/95
Y6	570	180	190	275	90	80		300	185		240/120	185/95


Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043

92411 Courbevoie Cedex- France (33) 01 47 68 75 00 ipsi@ipsifrance.com


4

: (33) 01 47 89 99 39 : www.ipsifrance.com

Туре	L mm	D mm	H mm	B mm
Y0	185	45	55	80
Y1	240	60	70	110
Y2	285	65	75	120
Y3	240	100	110	145
Y3.5	300	110	120	150
Y4	285	110	120	170
Y4.5	335	120	130	193
Y5	382	140	150	220
Y6	570	180	190	275

(33) 01 47 89 99 39 • : www.ipsifrance.com

BOITE DE JONCTION AVEC RESINE A COULER

Utilisation universelle pour connecter les câbles basse tension à isolation synthétique ou conducteurs à isolation PVC, PE, VPE et EPR (par ex.: N(A) YY, NYM, TT). Utilisation appropriée pour câbles en cuivre et aluminium.

Caractéristiques

- Dimension compacte
- Visibilité de la connexion avant coulée
- Coquilles en matière plastique de grande qualité, transparentes et résistantes aux chocs
- Immédiatement opérationnel
- Montage simple et rapide, d'où un gain de temps et de coûts
- Grande ouverture pour un coulage facile
- Bonne résistance aux agents chimiques
- Résistant aux terres alcalines
- Résistant aux UV
- Étanche longitudinalement et transversalement
- Haute isolation électrique
- Haute tenue mécanique

Applications

- Intérieur
- Extérieur
- Ligne souterraine
- Eau
- Voies d'installation

Niveau de tension

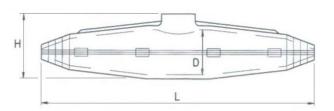
• U0/U (Um) 0.6/1 (1.2) kV

Volume de livraison

- Couverture
- Résine à couler PUR résistante à l'hydrolyse type EG, mélangée et mesurée, emballée dans deux sacs pratiques et facile à utiliser
- Coquilles transparentes et auto-étanches en polycarbonate
- Pièces d'espacement
- Instructions de montage
- Ruban PVC isolant
- Gants protecteurs

Indication

• sans connecteurs


Tests

- DIN VDE 0278 partie 1 et 3
- DIN VDE 0278 partie 393
- EN 50393 ainsi que CENELEC HD 623 (VDE 0278 partie 623)

Conditions de stockage/Conservation

• Résine à couler à 40 mois

					Câble à isola	ation synthétique	écran concentrique	armés
Туре	max. mm mm		D mm	H mm				
	mm				4x	5x	3x	4x
					Se	ection transversale pa	ır conducteur max. mm²	2
M11	26	190	36	50	10	6	10/10	4
M12	34	260	47	63	25	16	25/25	10
M13S	43	310	55	68	35	25	35/35	25
M13	43	360	55	75	50	35	50/50	35
M14S	48	350	70	95	70	50	70/70	50
M14	48	400	70	95	95	70	95/95	70
M15	63	530	100	120	150	120	150/150	120
M16	81	700	125	160	240	185	240/120	240

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043 92411 Courbevoie Cedex- France

∃ : (33) 01 47 89 99 39→ : www.ipsifrance.com

RUBAN D'INSTALLATION ELECTRIQUE

- ✓ Fiabilité exceptionnelle des rubans électriques Scotch®
- ✓ Répondent à l'ensemble des applications d'isolation basse tension et haute tension
- ✓ L'expertise du 1er fabricant mondial de rubans adhésifs

Ruban électriques d'isolation

Isolation électrique : basse tension

Protection mécanique

Protection contre l'humidité et les agents chimiques (acides, bases).

Ruban vinyle Scotch® Super 33+

Description : Ruban électrique hautes performances doté d'un puissant adhésif sensible à la pression. Son épaisseur de 0,18mm garantit son excellente souplesse.

Application: En intérieur et en extérieur: Reconstitution de gaines de câble BT ou HT, compatible avec l'isolation synthétique des câbles, les élastomères (Scotchfil-Scotch® 23) et les résines époxy et polyuréthanne. Isolation et protection de câbles et d'épissures.

Caractéristiques : Excellente tenue mécanique et souplesse, permettant sa mise en œuvre de -18°C à +60°C. Il est conçu pour rester performant dans des conditions extrêmes de température ambiante de -40°C à +105°C. Résistant aux U.V, aux acides, aux Alcalis. Auto-extinguible, résistant aux intempéries.

Non propagateur de la flamme.

Ruban vinyle Scotch® 22

Description : Ruban support vinyle souple isolant noir, enduit d'un adhésif non corrosif. Son épaisseur de 0,25mm garantit une excellente mécanique.

Application : En intérieur et en extérieur : Isolation ou protection de gaines de câbles, de raccordements divers électriques : conducteurs de transformateurs, raccordements de disjoncteurs, barres de raccordements. Frettage de câbles.

Caractéristiques: Excellente tenue mécanique. Souplesse. Non propagateur de la flamme. Excellente résistance aux agressions diverses (abrasions, intempéries, moisissures, alcalis, U.V.). Classe Y (80°C).

Ruban auto-soudables

La plupart de ces rubans sont utilisables pour des applications en BT et HTA jusqu'à 69kV (jonctions, dérivations et extrémités). Résistants à l'humidité.

Auto soudables.

Application 90°C en continu, 130°C en pointe.

Ruban d'isolation élastomère Scotch® 23

Description: Ruban élastomère de couleur noire isolant électrique à base d'EPR (Ethylène-Propylène-Rubber) d'épaisseur 0,75mm, muni d'un intercalaire.

Application : Reconstitution d'isolant de câbles jusqu'à une tension de 69kV. **Frettage :** Associé au ruban tricot de cuivre étamé Scotch 24 en

remplacement des soudures. Réalisation de bouchons d'étanchéité autour de câbles et conduits divers.

Caractéristiques: Auto soudable: les couches du ruban se soudent en une masse homogène après application. Excellente résistance à l'ozone. Compatibilité avec tous les isolants de câbles synthétiques et avec les isolants de câbles papier imprégné à matière non migrante. Le ruban est sans halogène.

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043

102 rue J.-B. Charcot − CS 60043 92411 Courbevoie Cedex- France (33) 01 47 68 75 00 (35) : ipsi@ipsifrance.com

: (33) 01 47 89 99 39: www.ipsifrance.com

Ruban pour étanchéité ou protection

Etanchéité. Isolation électrique jusqu'à 600 V.

Ruban élastomère Scotchfil™

Description: Ruban mastic isolant à base de caoutchouc synthétique noncorrosif muni d'un intercalaire blanc débordant. Il a une épaisseur de 3 mm.

Application: Recouvrement des angles vifs des cosses et des connexions. Reconstitution de l'isolant de câbles électriques B.T. Joint d'étanchéité.

Réparation des gaines de câbles. Suppression des irrégularités.

Isolation des bornes électriques basse tension.

Caractéristiques : Auto soudable instantanément en une masse solide et homogène autour de toutes formes, même irrégulières. Très souple et très plastique : le ruban Scotchfil™ possède d'excellentes propriétés électriques, ainsi qu'une très bonne tenue au vieillissement. Il ne durcit pas, ne craquèle pas et ne moisit pas. Compatible avec tous les isolants de gaine de câble. Tenue en température de -20 °C à +80 °C.

GRILLAGE AVERTISSEUR

Utilisation:

Permet d'avertir de la présence d'un ouvrage enterré, d'identifier sa nature et de signaler son orientation.

Caractéristiques:

- Matière : polyoléfines
- Couleurs: rouge, vert, jaune, bleu, orange, blanc, marron.
- Très forte résistance mécanique due à l'entrelacement très large des mailles.
- Coloration dans la masse inaltérable.
- Aucune corrosion naturelle.

Dispositif avertisseur:

Au-dessus de chaque canalisation, doit être installé un dispositif avertisseur, type grillage plastique.

Ce dispositif avertisseur est placé à 0,20m au dessus de la canalisation.

Il doit être de la même couleur que la canalisation (ROUGE pour les canalisations électriques)

Conditionnement:

- Longueur : rouleaux de 100m
- Largeur: 0,30m
- Grillage détectable sur demande
- Vendu à l'unité ou palette/cartons de 72 rouleaux

JANOFLEX - TPC N

Systèmes de conduits de protection de câbles et/ou de gaines électriques souterrains suivant NF EN 50086-2-4+A1

Normes Européennes :

NF EN 50086-2-4+A1

Couleurs:

Jaune: Gaz Bleu: Eau

Vert: Télécommunication

Rouge: Electricité

Orange et Blanc : Fibre optique

Conditionnement:

Couronne de 25m de 50mm de diamètre.

Caractéristiques techniques :

Matière : Polyéthylène

Raccordement: Tous nos conduits janoflex® sont équipés de manchons crantés.

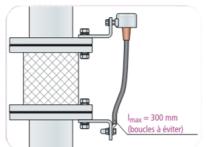
Résistance:

Aux chocs: essai à -5°C, masse 5kg, percuteur: Ø 20mm, rayon 300m

A l'écrasement : une force minimum de 450N est nécessaire pour une déformation du Ø intérieur de 5%

Température :

De stockage et transport : mini -25°C De mise en œuvre : mini -15°C D'utilisation permanent : 60°C Indice de protection mini: IP30


ipsi@ipsifrance.com

ECLATEUR DE LIGNES ANTI-DEFLAGRANT

- Pour le raccordement/la mise à la terre indirecte d'éléments d'installation isolées en exploitation normale lors d'un impact de foudre
- Version conforme à l'équilibrage de potentiel pour la protection contre la foudre selon CEI 62305 et NF EN 62305 pour les zones à risque d'explosion (zone 2)
- Conforme à la Directive ATEX 94/9/EG
- Boîtier en zinc moulé sous pression résistant à la corrosion avec calotte en matière plastique et raccordement conducteur flexible
- Pour le pontage de pièces d'isolement, etc. sur des segments de tuyaux protégés cathodique-ment contre la
- Conception résistant à de très fortes charges

Variante de montage EXFS

Dimensions EXFS

	EXFS L100	EXFS L200	EXFS L300
Courant de foudre (10/350) limp	50kA	50kA	50kA
Classe de tenue au courant de foudre selon EN 50164-3	N	N	N
Courant nominal de décharge (8/20) In	100kA	100kA	100kA
Tension alternative permanente assignée (50Hz) Uw/ac	300V	300V	300V
Tension de choc de foudre d'amorçage à 100% Urimp	≤2,5kV	≤2,5kV	≤2,5kV
Tension alternative d'amorçage (50 Hz) Uaw	≤1,2kV	≤1,2kV	≤1,2kV
Sigle Ex selon EN 60079	Ex II 3 G EEx nC II T4	Ex II 3 G EEx nC II T4	Ex II 3 G EEx nC II T4
Température d'utilisation Tu	-20°C+80°C	-20°C+80°C	-20°C+80°C
Indice de protection	IP54	IP54	IP54
Certification	ZELM 03 ATEX 3192X	ZELM 03 ATEX 3192X	ZELM 03 ATEX 3192X
Longueur du boîtier	90mm	90mm	90mm
Diamètre du boîtier	63mm	63mm	63mm
Matériau du boîtier		Zinc moulé sous pression, matière plastique	
Câble de raccordement		H01N2-D 25mm² avec cosse et vis / écrou M10	
Longueur du câble	100mm	200mm	300mm
Convient aux dimensions de flasque	20-130mm	120-130mm	220-130mm

Société Internationale de Produits et Services Industriels 102 rue J.-B. Charcot – CS 60043
92411 Courbevoie Cedex- France
3 : (33) 01 47 68 75 00
3 : (33) 01 47 68 75 00

: ipsi@ipsifrance.com

: (33) 01 47 89 99 39 : www.ipsifrance.com